生物信息学高质量刊物


个人觉得生信期刊的水平排名(只谈计算方法)

1,Nature Biotechnology (Article)

生信人心中的梦之刊,很少有纯计算能上的,一般都需要一定的湿实验验证,在计算领域某些场合认可度甚至高于正刊。

2,Nature Methods, Nature Biotechnology (Analysis/Letter)

属于普通人可达到的巅峰,PHD中一篇基本可以在几乎任何学校躺平到毕业了,中国内地的phd student能发到前两档的两只手都数的过来。

3,Nature Genetics, Nature machine intelligence

难度稍低于2档,这两本侧重点不同,ng数据量和结论更突出,nmi算法更突出。相对于前两档,稀缺性也弱一些。

4,Nature Communications, Science Advances, PNAS (Direct Submissions)

好文章,且越来越难发。有两三篇配上几篇小文章就可以优青排排队了。

5,Genome Biology, Genome Research, Cell systems

比4略低,周围的朋友一般在NC悲剧之后转投这三个,但个人认为因为稿源原因,会和4逐渐拉开差距。

6,Advanced Science, Cell Research,Nucleic Acid Research

as会有少量生信文章,cr关系稿较多,nar会有些惨不忍睹的数据库

7,Nature Computational Science,PNAS (Member Contributed),Bioinformatics, PLoS computational biology

bioinformatics和pcb都是老牌生信牛刊,很多大牛会认。ncs上文章水平越来越差,没有发现变好的趋势。pnas有一些惨不忍睹的关系稿

8,cell reports methods, communications biology

cell reports和nc的新子刊,值得关注

9,TCBB, BMC Bioinformatics, BMC Genomics, BIB, GPB

本科生可以随便玩玩,博士生就不应该考虑了

10,Plos One, Scientific Report, iscience

转自:生物信息学领域有哪些牛刊? - 知乎

写得很好,有用的话给个一键三连哦!

### 高影响因子普通期刊的选择 在学术研究中,选择高影响因子的普通期刊对于提升研究成果的认可度至关重要。以下是几个常见的领域及其对应的高影响因子普通期刊列表: #### 自然科学领域 - **Journal of the American Chemical Society (JACS)** JACS 是化学领域的顶级期刊之一,涵盖了广泛的化学学科主题,其影响因子通常保持在高水平[^3]。 - **Angewandte Chemie International Edition** 这是一份国际知名的化学期刊,专注于基础和应用化学的研究成果,具有较高的影响力。 #### 生命科学领域 - **Molecular Cell** Molecular Cell 主要发表分子生物学、细胞生物学及相关领域的高质量研究论文,影响因子稳定在较高水平。 - **Cell Reports** Cell Reports 提供了一个开放获取的平台来展示生命科学研究的新发现,尽管相较于 Cell 正刊稍低,但仍属高影响因子范畴。 #### 工程与技术领域 - **Advanced Materials** Advanced Materials 聚焦于材料科学和技术进步方面的突破性工作,拥有非常高的引用量和支持率[^5]。 - **Nano Energy** Nano Energy 致力于纳米能源转换存储器件的基础理论探索及实际应用开发等方面的内容报道,近年来影响因子持续上升。 #### 计算机科学领域 - **IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)** TPAMI 是模式识别与机器智能方向最具权威性的期刊之一,长期占据该领域最高位置。 - **ACM Computing Surveys (CSUR)** CSUR 发表关于计算领域的全面综述文章,因其详尽深入而备受推崇,同样具备很高的学术价值。 需要注意的是,虽然上述列举了一些具体例子,但每年各杂志的实际表现可能会有所波动,因此建议定期关注最新的统计数据以获得最准确的信息[^4]。此外,还可以利用 Web of Science 数据库或者 LetPub 平台查询目标刊物的具体情况以便做出更明智的选择[^1]。 ```python import pandas as pd # 假设我们有一个包含期刊名称和对应影响因子的数据框 df df = pd.DataFrame({ 'Journal': ['JACS', 'Angewandte Chemie', 'Molecular Cell', 'Cell Reports', 'Advanced Materials', 'Nano Energy', 'TPAMI', 'CSUR'], 'Impact Factor': [16.383, 16.823, 17.026, 9.423, 32.082, 19.069, 24.334, 10.659] }) print(df.sort_values(by='Impact Factor', ascending=False)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值