索引
- 含有 a + b x a+bx a+bx的形式
-
- 11. ∫ 1 x ( a + b x ) 2 d x = 1 a ( 1 a + b x + 1 a ln ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{x{ {\left( a+bx \right)}^{2}}}dx}=\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C ∫x(a+bx)21dx=a1(a+bx1+a1ln∣∣a+bxx∣∣)+C
- 12. ∫ 1 x 2 ( a + b x ) d x = − 1 a ( 1 x + b a ln ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}\left( a+bx \right)}dx}=-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C ∫x2(a+bx)1dx=−a1(x1+abln∣∣a+bxx∣∣)+C
- 13. ∫ 1 x 2 ( a + b x ) 2 d x = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ∣ x a + b x ∣ ] + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}{ {\left( a+bx \right)}^{2}}}dx}=-\frac{1}{ { {a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C ∫x2(a+bx)21dx=−a21[x(a+bx)a+2bx+a2bln∣∣a+bxx∣∣]+C
- 含有 a 2 ± x 2 , a > 0 { {a}^{2}}\pm { {x}^{2}},a>0 a2±x2,a>0的形式
-
- 14. ∫ 1 a 2 + x 2 d x = 1 a arctan x a + C \int_{ {}}^{ {}}{\frac{1}{ { {a}^{2}}+{ {x}^{2}}}dx}=\frac{1}{a}\arctan \frac{x}{a}+C ∫a2+x21dx=a1arctanax+C
- 15. ∫ 1 x 2 − a 2 d x = − ∫ 1 a 2 − x 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}-{ {a}^{2}}}dx}=-\int_{ {}}^{ {}}{\frac{1}{ { {a}^{2}}-{ {x}^{2}}}dx}=\frac{1}{2a}\ln \left| \frac{x-a}{x+a} \right|+C ∫x2−a21dx=−∫a2−x21dx=2a1ln∣∣x+ax−a∣∣+C
- 16. ∫ 1 ( a 2 ± x 2 ) n d x = 1 2 a 2 ( n − 1 ) [ x ( a 2 ± x 2 ) n − 1 + ( 2 n − 3 ) ∫ 1 ( a 2 ± x 2 ) n − 1 d x ] , n ≠ 1 \int_{ {}}^{ {}}{\frac{1}{ { {\left( { {a}^{2}}\pm { {x}^{2}} \right)}^{n}}}dx}=\frac{1}{2{ {a}^{2}}\left( n-1 \right)}\left[ \frac{x}{ { {\left( { {a}^{2}}\pm { {x}^{2}} \right)}^{n-1}}}+\left( 2n-3 \right)\int_{ {}}^{ {}}{\frac{1}{ { {\left( { {a}^{2}}\pm { {x}^{2}} \right)}^{n-1}}}dx} \right],\text{ }n\ne 1 ∫(a2±x2)n1dx=2a2(n−1)1[(a2±x2)n−1x+(2n−3)∫(a2±x2)n−11dx], n=1
- 含有 a + b x + c x 2 , b 2 ≠ 4 a c a+bx+c{ {x}^{2}},\text{ }{ {b}^{2}}\ne 4ac a+bx+cx2, b2=4ac的形式
-
- 17. ∫ 1 a + b x + c x 2 d x = ⋯ \int_{ {}}^{ {}}{\frac{1}{a+bx+c{ {x}^{2}}}}dx=\cdots ∫a+bx+cx21dx=⋯
- 18. ∫ x a + b x + c x 2 d x = 1 2 c [ ln ∣ a + b x + c x 2 ∣ − b ∫ 1 a + b x + c x 2 d x ] \int{\frac{x}{a+bx+c{ {x}^{2}}}dx}=\frac{1}{2c}\left[ \ln \left| a+bx+c{ {x}^{2}} \right|-b\int{\frac{1}{a+bx+c{ {x}^{2}}}dx} \right] ∫a+bx+cx2xdx=2c1[ln∣∣a+bx+cx2∣∣−b∫a+bx+cx21dx]
- 含有 a + b x \sqrt[{}]{a+bx} a+bx的形式
-
- 19. ∫ x n a + b x d x = 2 b ( 2 n + 3 ) ⋅ [ x n ( a + b x ) 3 2 − n a ∫ x n − 1 a + b x d x ] \int_{ {}}^{ {}}{ { {x}^{n}}\sqrt[{}]{a+bx}dx}=\frac{2}{b\left( 2n+3 \right)}\centerdot \left[ { {x}^{n}}{ {\left( a+bx \right)}^{\frac{3}{2}}}-na\int_{ {}}^{ {}}{ { {x}^{n-1}}\sqrt[{}]{a+bx}dx} \right] ∫xna+bxdx=b(2n+3)2⋅[xn(a+bx)23−na∫xn−1a+bxdx]
- 20. ∫ 1 x a + b x d x = … \int_{ {}}^{ {}}{\frac{1}{x\sqrt[{}]{a+bx}}dx}=\ldots ∫xa+bx1dx=…
含有 a + b x a+bx a+bx的形式
11. ∫ 1 x ( a + b x ) 2 d x = 1 a ( 1 a + b x + 1 a ln ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{x{ {\left( a+bx \right)}^{2}}}dx}=\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C ∫x(a+bx)21dx=a1(a+bx1+a1ln∣∣a+bxx∣∣)+C
证明:
∫ 1 x ( a + b x ) 2 d x = ∫ ( 1 a 2 ⋅ 1 x − b a 2 ⋅ 1 a + b x − b a ⋅ 1 ( a + b x ) 2 ) d x = 1 a 2 ∫ 1 x d x − 1 a 2 ∫ 1 a + b x d ( a + b x ) − 1 a ∫ 1 ( a + b x ) 2 d ( a + b x ) = 1 a ( 1 a + b x + 1 a ln ∣ x a + b x ∣ ) + C \begin{aligned} & \int_{
{}}^{
{}}{\frac{1}{x{
{\left( a+bx \right)}^{2}}}dx}=\int_{
{}}^{
{}}{\left( \frac{1}{
{
{a}^{2}}}\centerdot \frac{1}{x}-\frac{b}{
{
{a}^{2}}}\centerdot \frac{1}{a+bx}-\frac{b}{a}\centerdot \frac{1}{
{
{\left( a+bx \right)}^{2}}} \right)dx} \\ & =\frac{1}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\frac{1}{x}dx}-\frac{1}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\frac{1}{a+bx}d\left( a+bx \right)}-\frac{1}{a}\int_{
{}}^{
{}}{\frac{1}{
{
{\left( a+bx \right)}^{2}}}d\left( a+bx \right)} \\ & =\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C \\ \end{aligned} ∫x(a+bx)21dx=∫(a21⋅x1−a2b⋅a+bx1−ab⋅(a+bx)21)dx=a21∫x1dx−a21∫a+bx1d(a+bx)−a1∫(a+bx)21d(a+bx)=a1(a+bx1+a1ln∣∣∣∣a+bxx∣∣∣∣)+C
12. ∫ 1 x 2 ( a + b x ) d x = − 1 a ( 1 x + b a ln ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}\left( a+bx \right)}dx}=-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C ∫x2(a+bx)1dx=−a1(x1+abln∣∣a+bxx∣∣)+C
证明:
∫ 1 x 2 ( a + b x ) d x = ∫ [ − b a 2 x + 1 a x 2 + b 2 a 2 a + b x ] d x = − b a 2 ∫ 1 x d x + 1 a ∫ 1 x 2 d x + b a 2 ∫ 1 a + b x d ( a + b x ) = − 1 a ( 1 x + b a ln ∣ x a + b x ∣ ) + C \begin{aligned} & \int_{
{}}^{
{}}{\frac{1}{
{
{x}^{2}}\left( a+bx \right)}dx}=\int_{
{}}^{
{}}{\left[ \frac{-\frac{b}{
{
{a}^{2}}}x+\frac{1}{a}}{
{
{x}^{2}}}+\frac{\frac{
{
{b}^{2}}}{
{
{a}^{2}}}}{a+bx} \right]dx} \\ & =-\frac{b}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\frac{1}{x}dx}+\frac{1}{a}\int_{
{}}^{
{}}{\frac{1}{
{
{x}^{2}}}dx}+\frac{b}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\frac{1}{a+bx}d\left( a+bx \right)} \\ & =-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C \\ \end{aligned} ∫x2(a+bx)1dx=∫[x2−a2bx+a1+a+bxa2b2]dx=−a2b∫x1dx+a1∫x21dx+a2b∫a+bx1d(a+bx)=−a1(x1+abln∣∣∣∣a+bxx∣∣∣∣)+C
13. ∫ 1 x 2 ( a + b x ) 2 d x = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ∣ x a + b x ∣ ] + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}{ {\left( a+bx \right)}^{2}}}dx}=-\frac{1}{ { {a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C ∫x2(a+bx)21dx=−a21[x(a+bx)a+2bx+a2bln∣∣a+bxx∣∣]+C
证明:
∫ 1 x 2 ( a + b x ) 2 d x = ∫ [ 1 x ( a + b x ) ] 2 d x = 1 a 2 ∫ [ 1 x − b a + b x ] 2 d x = 1 a 2 ∫ [ 1 x 2 − 2 b x ( a + b x ) + b 2 ( a + b x ) 2 ] d x = 1 a 2 ∫ [ 1 x 2 − 2 b a ( 1 x − b a + b x ) + b 2 ( a + b x ) 2 ] d x = 1 a 2 ∫ 1 x 2 d x − 2 b a 3 ∫ 1 x d x + 2 b a 3 ∫ 1 a + b x d ( a + b x ) + b a 2 ∫ 1 ( a + b x ) 2 d ( a + b x ) = − 1 a 2 x − 2 b a 3 ln ∣ x ∣ + 2 b a 3 ln ∣ a + b x ∣ − b a 2 ⋅ 1 a + b x + C = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ∣ x a + b x ∣ ] + C \begin{aligned} & \int_{
{}}^{
{}}{\frac{1}{
{
{x}^{2}}{
{\left( a+bx \right)}^{2}}}dx}=\int_{
{}}^{
{}}{
{
{\left[ \frac{1}{x\left( a+bx \right)} \right]}^{2}}dx} \\ & =\frac{1}{
{
{a}^{2}}}\int_{
{}}^{
{}}{
{
{\left[ \frac{1}{x}-\frac{b}{a+bx} \right]}^{2}}dx} \\ & =\frac{1}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\left[ \frac{1}{
{
{x}^{2}}}-\frac{2b}{x\left( a+bx \right)}+\frac{
{
{b}^{2}}}{
{
{\left( a+bx \right)}^{2}}} \right]dx} \\ & =\frac{1}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\left[ \frac{1}{
{
{x}^{2}}}-\frac{2b}{a}\left( \frac{1}{x}-\frac{b}{a+bx} \right)+\frac{
{
{b}^{2}}}{
{
{\left( a+bx \right)}^{2}}} \right]dx} \\ & =\frac{1}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\frac{1}{
{
{x}^{2}}}dx}-\frac{2b}{
{
{a}^{3}}}\int_{
{}}^{
{}}{\frac{1}{x}dx}+\frac{2b}{
{
{a}^{3}}}\int_{
{}}^{
{}}{\frac{1}{a+bx}d\left( a+bx \right)}+\frac{b}{
{
{a}^{2}}}\int_{
{}}^{
{}}{\frac{1}{
{
{\left( a+bx \right)}^{2}}}d\left( a+bx \right)} \\ & =\frac{-1}{
{
{a}^{2}}x}-\frac{2b}{
{
{a}^{3}}}\ln \left| x \right|+\frac{2b}{
{
{a}^{3}}}\ln \left| a+bx \right|-\frac{b}{
{
{a}^{2}}}\centerdot \frac{1}{a+bx}+C \\ & =-\frac{1}{
{
{a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C \\ \end{aligned} ∫x2(a+bx)21dx=∫[x(a+bx)1]2dx=a21∫[x1−a+bxb]2dx=a21∫[x21−x(a+bx)2b+(a+bx)2b2]dx=a21∫[x21−a2b(x1−a+bxb)+(a+bx)2b2]dx=a21∫x21dx−a32b∫x1dx+a32b∫a+bx1d(a+bx)+a2b∫(a+bx)21d(a+bx)=a2x−1−a32bln∣x∣+a32bln∣a+bx∣−a<