100道积分公式证明(11-20)

这篇博客详细证明了100道积分公式中的一部分,包括含有a+bx、a^2±x^2形式的积分。例如,证明了∫x(a+bx)^2 dx = a/(a+bx) + a ln|a+bx/x| + C,以及∫(a^2+x^2)^{-1} dx = a arctan(ax) + C等。涉及多项式、平方根和二次方程的积分计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

索引

含有 a + b x a+bx a+bx的形式

11. ∫ 1 x ( a + b x ) 2 d x = 1 a ( 1 a + b x + 1 a ln ⁡ ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{x{ {\left( a+bx \right)}^{2}}}dx}=\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C x(a+bx)21dx=a1(a+bx1+a1lna+bxx)+C

证明:
∫ 1 x ( a + b x ) 2 d x = ∫ ( 1 a 2 ⋅ 1 x − b a 2 ⋅ 1 a + b x − b a ⋅ 1 ( a + b x ) 2 ) d x = 1 a 2 ∫ 1 x d x − 1 a 2 ∫ 1 a + b x d ( a + b x ) − 1 a ∫ 1 ( a + b x ) 2 d ( a + b x ) = 1 a ( 1 a + b x + 1 a ln ⁡ ∣ x a + b x ∣ ) + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{x{ {\left( a+bx \right)}^{2}}}dx}=\int_{ {}}^{ {}}{\left( \frac{1}{ { {a}^{2}}}\centerdot \frac{1}{x}-\frac{b}{ { {a}^{2}}}\centerdot \frac{1}{a+bx}-\frac{b}{a}\centerdot \frac{1}{ { {\left( a+bx \right)}^{2}}} \right)dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{x}dx}-\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{a+bx}d\left( a+bx \right)}-\frac{1}{a}\int_{ {}}^{ {}}{\frac{1}{ { {\left( a+bx \right)}^{2}}}d\left( a+bx \right)} \\ & =\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C \\ \end{aligned} x(a+bx)21dx=(a21x1a2ba+bx1ab(a+bx)21)dx=a21x1dxa21a+bx1d(a+bx)a1(a+bx)21d(a+bx)=a1(a+bx1+a1lna+bxx)+C

12. ∫ 1 x 2 ( a + b x ) d x = − 1 a ( 1 x + b a ln ⁡ ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}\left( a+bx \right)}dx}=-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C x2(a+bx)1dx=a1(x1+ablna+bxx)+C

证明:
∫ 1 x 2 ( a + b x ) d x = ∫ [ − b a 2 x + 1 a x 2 + b 2 a 2 a + b x ] d x = − b a 2 ∫ 1 x d x + 1 a ∫ 1 x 2 d x + b a 2 ∫ 1 a + b x d ( a + b x ) = − 1 a ( 1 x + b a ln ⁡ ∣ x a + b x ∣ ) + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}\left( a+bx \right)}dx}=\int_{ {}}^{ {}}{\left[ \frac{-\frac{b}{ { {a}^{2}}}x+\frac{1}{a}}{ { {x}^{2}}}+\frac{\frac{ { {b}^{2}}}{ { {a}^{2}}}}{a+bx} \right]dx} \\ & =-\frac{b}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{x}dx}+\frac{1}{a}\int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}}dx}+\frac{b}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{a+bx}d\left( a+bx \right)} \\ & =-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C \\ \end{aligned} x2(a+bx)1dx=[x2a2bx+a1+a+bxa2b2]dx=a2bx1dx+a1x21dx+a2ba+bx1d(a+bx)=a1(x1+ablna+bxx)+C

13. ∫ 1 x 2 ( a + b x ) 2 d x = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ⁡ ∣ x a + b x ∣ ] + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}{ {\left( a+bx \right)}^{2}}}dx}=-\frac{1}{ { {a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C x2(a+bx)21dx=a21[x(a+bx)a+2bx+a2blna+bxx]+C

证明:
∫ 1 x 2 ( a + b x ) 2 d x = ∫ [ 1 x ( a + b x ) ] 2 d x = 1 a 2 ∫ [ 1 x − b a + b x ] 2 d x = 1 a 2 ∫ [ 1 x 2 − 2 b x ( a + b x ) + b 2 ( a + b x ) 2 ] d x = 1 a 2 ∫ [ 1 x 2 − 2 b a ( 1 x − b a + b x ) + b 2 ( a + b x ) 2 ] d x = 1 a 2 ∫ 1 x 2 d x − 2 b a 3 ∫ 1 x d x + 2 b a 3 ∫ 1 a + b x d ( a + b x ) + b a 2 ∫ 1 ( a + b x ) 2 d ( a + b x ) = − 1 a 2 x − 2 b a 3 ln ⁡ ∣ x ∣ + 2 b a 3 ln ⁡ ∣ a + b x ∣ − b a 2 ⋅ 1 a + b x + C = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ⁡ ∣ x a + b x ∣ ] + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}{ {\left( a+bx \right)}^{2}}}dx}=\int_{ {}}^{ {}}{ { {\left[ \frac{1}{x\left( a+bx \right)} \right]}^{2}}dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{ { {\left[ \frac{1}{x}-\frac{b}{a+bx} \right]}^{2}}dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\left[ \frac{1}{ { {x}^{2}}}-\frac{2b}{x\left( a+bx \right)}+\frac{ { {b}^{2}}}{ { {\left( a+bx \right)}^{2}}} \right]dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\left[ \frac{1}{ { {x}^{2}}}-\frac{2b}{a}\left( \frac{1}{x}-\frac{b}{a+bx} \right)+\frac{ { {b}^{2}}}{ { {\left( a+bx \right)}^{2}}} \right]dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}}dx}-\frac{2b}{ { {a}^{3}}}\int_{ {}}^{ {}}{\frac{1}{x}dx}+\frac{2b}{ { {a}^{3}}}\int_{ {}}^{ {}}{\frac{1}{a+bx}d\left( a+bx \right)}+\frac{b}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{ { {\left( a+bx \right)}^{2}}}d\left( a+bx \right)} \\ & =\frac{-1}{ { {a}^{2}}x}-\frac{2b}{ { {a}^{3}}}\ln \left| x \right|+\frac{2b}{ { {a}^{3}}}\ln \left| a+bx \right|-\frac{b}{ { {a}^{2}}}\centerdot \frac{1}{a+bx}+C \\ & =-\frac{1}{ { {a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C \\ \end{aligned} x2(a+bx)21dx=[x(a+bx)1]2dx=a21[x1a+bxb]2dx=a21[x21x(a+bx)2b+(a+bx)2b2]dx=a21[x21a2b(x1a+bxb)+(a+bx)2b2]dx=a21x21dxa32bx1dx+a32ba+bx1d(a+bx)+a2b(a+bx)21d(a+bx)=a2x1a32blnx+a32blna+bxa<

### 回答1: 泰勒公式是一种近似函数值的方法,它可以用来估算一个函数在某一点附近的值。 设函数f(x)在x=a处可导,那么它的n阶导数存在。我们可以用如下公式来近似函数f(x)在x=a附近的值: f(x) ≈ f(a) + f'(a)(x-a) + (f''(a)/2!) (x-a)^2 + ... + (f^(n)(a)/n!) (x-a)^n 这就是泰勒公式的基本形式。可以看出,随着n的增大,泰勒公式的精度也会增高。 为了证明这个公式,我们可以使用泰勒公式的基本形式来展开函数f(x): f(x) = f(a) + ∑(n=1,∞) (f^(n)(a)/n!) (x-a)^n 然后我们可以使用数学归纳法证明: 1.当n=0时,泰勒公式成立 2.假设当n=k时,泰勒公式成立 3.当n=k+1时, f(x) = f(a) + ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n + (f^(k+1)(a)/(k+1)!) (x-a)^(k+1)(n=1,k) (f^(n)(a)/n!) (x-a)^n 与 f(x)的差值为 R(k+1)(x) = (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) 由于 f(a) = f(x) -R(k+1)(x) 成立 所以当n=k+1时,泰勒公式仍然成立。 所以,对于任意的正整数n,泰勒公式都成立 ### 回答2: 泰勒公式是用来近似表示一个函数在某个点附近的展开式。我们可以用微积分的方法来证明泰勒公式。 设函数f(x)在区间[a,b]上连续,在(a,b)内具有各阶导数,且f(x)(n+1)阶导数在这个区间内连续。那么对于这个区间内的任意一点x,存在一个点ξ,保证: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! + Rⁿ(x) 其中Rⁿ(x)为Lagrange余项,可以表示为:Rⁿ(x) = (fⁿ⁺¹(ξ)(x-a)ⁿ⁺¹)/(n+1)! 为了证明泰勒公式,我们可以根据函数的导数定义和极限的性质进行推导。 首先,我们可以使用高阶导数的定义,对于x=a时,将函数f(x)进行泰勒展开。然后,使用导数定义的极限性质,我们可以得到展开式中各阶导数的表达式。 接着,我们用极限来证明Lagrange余项的存在性。我们可以构造一个辅助函数g(t),然后使用中值定理来证明(a,b)内存在一个点ξ,使得Rⁿ(x)等于g(t)的极限。 最后,使用极限的性质以及泰勒级数的收敛性条件,我们可以得到泰勒公式证明。根据展开式中各项的逐渐趋近于零,我们可以得到当n趋于无穷大时,Rⁿ(x)趋近于零,从而得到f(x)在a点附近的泰勒展开式。 综上所述,我们可以用微积分的方法证明了泰勒公式。 ### 回答3: 泰勒公式是微积分中非常重要的一个公式,可以用来近似计算函数在某一点附近的值。现在我们用微积分的知识来证明泰勒公式。 假设函数f(x)在某一点a处连续,并且在开区间(a, b)上存在n+1阶导数。我们要证明泰勒公式: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + R_n(x) 其中R_n(x)是余项,表示泰勒多项式和原函数之差。 首先,我们定义一个辅助函数,称为Lagrange中值定理函数,记作g(t) = f(x) - P_n(x),其中P_n(x)表示泰勒多项式的和式。我们可以得到g(a) = 0,而g(x)(a, b)上具有(n+1)阶导数。 根据Lagrange中值定理,我们可以找到一个介于x和a之间的数c,使得g'(c) = 0。同理,我们可以找到介于x和c之间的数d,使得g''(d) = 0。通过不断重复这个过程,我们可以找到介于x和a之间的一系列数,把它们依次命名为c1、c2、c3、...,使得g^n(cn) = 0。 现在,我们可以考虑余项R_n(x)。根据Lagrange中值定理,我们可以推导出: R_n(x) = g(x) = g^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 由于g^(n+1)(c_n+1) = f^(n+1)(c_n+1) - P_n^(n+1)(c_n+1) = f^(n+1)(c_n+1) - 0 = f^(n+1)(c_n+1),其中P_n^(n+1)(c_n+1)表示泰勒多项式的高阶导数,由于是和式,高阶导数为0。 所以,我们得到: R_n(x) = f^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 这样,我们通过微积分的知识证明了泰勒公式。这个公式在近似计算中具有广泛的应用,可以有效地帮助我们进行函数值的估计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值