100道积分公式证明(11-20)

这篇博客详细证明了100道积分公式中的一部分,包括含有a+bx、a^2±x^2形式的积分。例如,证明了∫x(a+bx)^2 dx = a/(a+bx) + a ln|a+bx/x| + C,以及∫(a^2+x^2)^{-1} dx = a arctan(ax) + C等。涉及多项式、平方根和二次方程的积分计算方法。
摘要由CSDN通过智能技术生成

索引

含有 a + b x a+bx a+bx的形式

11. ∫ 1 x ( a + b x ) 2 d x = 1 a ( 1 a + b x + 1 a ln ⁡ ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{x{ {\left( a+bx \right)}^{2}}}dx}=\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C x(a+bx)21dx=a1(a+bx1+a1lna+bxx)+C

证明:
∫ 1 x ( a + b x ) 2 d x = ∫ ( 1 a 2 ⋅ 1 x − b a 2 ⋅ 1 a + b x − b a ⋅ 1 ( a + b x ) 2 ) d x = 1 a 2 ∫ 1 x d x − 1 a 2 ∫ 1 a + b x d ( a + b x ) − 1 a ∫ 1 ( a + b x ) 2 d ( a + b x ) = 1 a ( 1 a + b x + 1 a ln ⁡ ∣ x a + b x ∣ ) + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{x{ {\left( a+bx \right)}^{2}}}dx}=\int_{ {}}^{ {}}{\left( \frac{1}{ { {a}^{2}}}\centerdot \frac{1}{x}-\frac{b}{ { {a}^{2}}}\centerdot \frac{1}{a+bx}-\frac{b}{a}\centerdot \frac{1}{ { {\left( a+bx \right)}^{2}}} \right)dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{x}dx}-\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{a+bx}d\left( a+bx \right)}-\frac{1}{a}\int_{ {}}^{ {}}{\frac{1}{ { {\left( a+bx \right)}^{2}}}d\left( a+bx \right)} \\ & =\frac{1}{a}\left( \frac{1}{a+bx}+\frac{1}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C \\ \end{aligned} x(a+bx)21dx=(a21x1a2ba+bx1ab(a+bx)21)dx=a21x1dxa21a+bx1d(a+bx)a1(a+bx)21d(a+bx)=a1(a+bx1+a1lna+bxx)+C

12. ∫ 1 x 2 ( a + b x ) d x = − 1 a ( 1 x + b a ln ⁡ ∣ x a + b x ∣ ) + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}\left( a+bx \right)}dx}=-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C x2(a+bx)1dx=a1(x1+ablna+bxx)+C

证明:
∫ 1 x 2 ( a + b x ) d x = ∫ [ − b a 2 x + 1 a x 2 + b 2 a 2 a + b x ] d x = − b a 2 ∫ 1 x d x + 1 a ∫ 1 x 2 d x + b a 2 ∫ 1 a + b x d ( a + b x ) = − 1 a ( 1 x + b a ln ⁡ ∣ x a + b x ∣ ) + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}\left( a+bx \right)}dx}=\int_{ {}}^{ {}}{\left[ \frac{-\frac{b}{ { {a}^{2}}}x+\frac{1}{a}}{ { {x}^{2}}}+\frac{\frac{ { {b}^{2}}}{ { {a}^{2}}}}{a+bx} \right]dx} \\ & =-\frac{b}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{x}dx}+\frac{1}{a}\int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}}dx}+\frac{b}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{a+bx}d\left( a+bx \right)} \\ & =-\frac{1}{a}\left( \frac{1}{x}+\frac{b}{a}\ln \left| \frac{x}{a+bx} \right| \right)+C \\ \end{aligned} x2(a+bx)1dx=[x2a2bx+a1+a+bxa2b2]dx=a2bx1dx+a1x21dx+a2ba+bx1d(a+bx)=a1(x1+ablna+bxx)+C

13. ∫ 1 x 2 ( a + b x ) 2 d x = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ⁡ ∣ x a + b x ∣ ] + C \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}{ {\left( a+bx \right)}^{2}}}dx}=-\frac{1}{ { {a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C x2(a+bx)21dx=a21[x(a+bx)a+2bx+a2blna+bxx]+C

证明:
∫ 1 x 2 ( a + b x ) 2 d x = ∫ [ 1 x ( a + b x ) ] 2 d x = 1 a 2 ∫ [ 1 x − b a + b x ] 2 d x = 1 a 2 ∫ [ 1 x 2 − 2 b x ( a + b x ) + b 2 ( a + b x ) 2 ] d x = 1 a 2 ∫ [ 1 x 2 − 2 b a ( 1 x − b a + b x ) + b 2 ( a + b x ) 2 ] d x = 1 a 2 ∫ 1 x 2 d x − 2 b a 3 ∫ 1 x d x + 2 b a 3 ∫ 1 a + b x d ( a + b x ) + b a 2 ∫ 1 ( a + b x ) 2 d ( a + b x ) = − 1 a 2 x − 2 b a 3 ln ⁡ ∣ x ∣ + 2 b a 3 ln ⁡ ∣ a + b x ∣ − b a 2 ⋅ 1 a + b x + C = − 1 a 2 [ a + 2 b x x ( a + b x ) + 2 b a ln ⁡ ∣ x a + b x ∣ ] + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}{ {\left( a+bx \right)}^{2}}}dx}=\int_{ {}}^{ {}}{ { {\left[ \frac{1}{x\left( a+bx \right)} \right]}^{2}}dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{ { {\left[ \frac{1}{x}-\frac{b}{a+bx} \right]}^{2}}dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\left[ \frac{1}{ { {x}^{2}}}-\frac{2b}{x\left( a+bx \right)}+\frac{ { {b}^{2}}}{ { {\left( a+bx \right)}^{2}}} \right]dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\left[ \frac{1}{ { {x}^{2}}}-\frac{2b}{a}\left( \frac{1}{x}-\frac{b}{a+bx} \right)+\frac{ { {b}^{2}}}{ { {\left( a+bx \right)}^{2}}} \right]dx} \\ & =\frac{1}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{ { {x}^{2}}}dx}-\frac{2b}{ { {a}^{3}}}\int_{ {}}^{ {}}{\frac{1}{x}dx}+\frac{2b}{ { {a}^{3}}}\int_{ {}}^{ {}}{\frac{1}{a+bx}d\left( a+bx \right)}+\frac{b}{ { {a}^{2}}}\int_{ {}}^{ {}}{\frac{1}{ { {\left( a+bx \right)}^{2}}}d\left( a+bx \right)} \\ & =\frac{-1}{ { {a}^{2}}x}-\frac{2b}{ { {a}^{3}}}\ln \left| x \right|+\frac{2b}{ { {a}^{3}}}\ln \left| a+bx \right|-\frac{b}{ { {a}^{2}}}\centerdot \frac{1}{a+bx}+C \\ & =-\frac{1}{ { {a}^{2}}}\left[ \frac{a+2bx}{x\left( a+bx \right)}+\frac{2b}{a}\ln \left| \frac{x}{a+bx} \right| \right]+C \\ \end{aligned} x2(a+bx)21dx=[x(a+bx)1]2dx=a21[x1a+bxb]2dx=a21[x21x(a+bx)2b+(a+bx)2b2]dx=a21[x21a2b(x1a+bxb)+(a+bx)2b2]dx=a21x21dxa32bx1dx+a32ba+bx1d(a+bx)+a2b(a+bx)21d(a+bx)=a2x1a32blnx+a32blna+bxa<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值