23.10.02更新 windows系统下的Tensorflow安装(图多详细)

本文详细介绍了如何在Windows系统(包括Windows10和Windows11)上,利用WSL2环境安装Tensorflow2.10及以上版本,包括安装Nvidia驱动、WSL2Ubuntu、CUDA、Cudnn和JupyterLab的步骤。
摘要由CSDN通过智能技术生成

windows(最高只能到2.10)

硬件要求

具有® CUDA® 架构 3.5、5.0、6.0、7.0、7.5、8.0及以上等。
![[Pasted image 20230928103104.png]]

系统要求

Windows 10 19044 或更高版本,windows11(64 位)

安装步骤

在Anaconda环境中依次输入以下代码

conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
python -m pip install "tensorflow<2.11"
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

windows wsl2(最新版)

硬件要求

具有® CUDA® 架构 3.5、5.0、6.0、7.0、7.5、8.0及以上等。
![[Pasted image 20230928103104.png]]

系统要求

Windows 10 19044 或更高版本,windows11(64 位)

安装步骤

第一步:安装Nvidia驱动

找到适合自己的驱动,并下载安装,可能需要魔法
Nvidia驱动网站:https://www.nvidia.com/download/index.aspx
![[Pasted image 20230928103532.png]]

第二步:安装wls2 Ubuntu

用快捷方式win+r打开运行,在运行里面输入cmd打开命令行窗口,运行下面代码

wsl --install

![[Pasted image 20230928105336.png]]

设置用户名和密码,我这里是已经安装了的. 如果界面出不来,上面代码多试几次

第三步:下载Miniconda Linux版

在wsl系统中输入下面代码

curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -o Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

![[Pasted image 20230928105429.png]]

按要求输入回车,看到证书要求信息,一直回车直到出现 Do you accept the license terms? [yes|no]
![[Pasted image 20230928105618.png]]

输入yes
![[Pasted image 20230928105656.png]]

输入回车
![[Pasted image 20230928105736.png]]

再输入yes
![[Pasted image 20230928105752.png]]

完成,输入exit退出Ubuntu系统.

第四步:在Ubuntu的Miniconda中创建虚拟环境

首先进入Ubuntu系统

wsl --distribution Ubuntu

然后输入以下代码,创建虚拟环境

conda create --name tf python=3.9
conda activate tf

在这里插入图片描述

![[Pasted image 20230928111538.png]]

环境安装完成

第五步:在Miniconda中安装Cuda并设置默认配置

接下来我们在miniconda中安装

conda install -c conda-forge cudatoolkit=11.8.0
pip install nvidia-cudnn-cu11==8.6.0.163

如果第二个pip命令安装速度慢可以在命令后面加上清华源

pip install nvidia-cudnn-cu11==8.6.0.163 -i https://pypi.tuna.tsinghua.edu.cn/simple

![[Pasted image 20230928112053.png]]

可以看到下载速度很快啊,很快,安装结束后我们设置默认配置,在命令行输入

CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDNN_PATH/lib:$CONDA_PREFIX/lib/
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDNN_PATH/lib:$CONDA_PREFIX/lib/' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh

![[Pasted image 20230928112341.png]]

没有返回就是默认配置完成.

第六步:安装 Tensorflow 和 jupyter lab

接下来我们来安装 Tensorflow 和 jupyter lab

pip install tensorflow==2.13.* -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install jupyterlab -i https://pypi.tuna.tsinghua.edu.cn/simple

![[Pasted image 20230928112809.png]]

可以看到,速度是非常快的!

第七步:测试安装是否完毕

在命令行端口输入

jupyter lab

![[Pasted image 20230928113324.png]]

复制框中的任意一个网站然后在浏览器打开
![[Pasted image 20230928113401.png]]

新建一个Notebook然后输入以下测试代码

import tensorflow as tf

print(f"Tensor Flow Version: {tf.__version__}")
gpu = len(tf.config.list_physical_devices('GPU'))>0
print("GPU is", "available" if gpu else "NOT AVAILABLE")

![[Pasted image 20230928113521.png]]

最新版Tensorflow安装完成!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值