基于yolov8pose的人体姿态检测识别
[摘 要] 本文介绍了一种用于人体姿态估计的高效卷积神经网络架构 YOLOv8-Pose。该网络针对实时推理进行了优化,尤其适用于PC端,并能高效地为人体生成关键点,支持多种姿态估计任务。YOLOv8-Pose具有快速的推理速度,能够在不同硬件平台上达到良好的性能,适合用于健身追踪、行为识别、手语翻译等实时应用。本文的主要贡献包括提出了一种基于YOLOv8框架的创新性姿态估计模型,能够通过单一网络同时进行物体检测与姿态估计。此外,该网络在设计上充分考虑了高效性与准确性,通过结合卷积特征提取与回归方法,实现了人体关键点的精确定位。YOLOv8-Pose兼具高效性与实时性,是一个适合部署在资源受限设备上的姿态估计解决方案。
[关键字] 人体姿态估计,yolov8pose,视频检测,卷积神经网络
作品展示
图6 coco2017训练准确率
图7 lsp训练集准确率
图8人体姿态识别热力图统计
图9 人体姿势图片识别
图10 Blazepose模型识别标记
图11 OLOv8pose模型识别标记
获取地址
“课程设计报告+代码” 获取详细内容:https://www.goofish.com/item?spm=a21ybx.personal.feeds.6.16886147lBtEb9&id=891174395542&categoryId=50023914