哈工大机器学习实验五(卷积神经网络的实现)

哈工大机器学习实验五(卷积神经网络的实现)

只是简单的思路,不是全部实验流程

1. LeNet-5 流程示意图

在这里插入图片描述

2. 代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader


# 定义LeNet-5模型
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        # 第一个卷积层:输入通道1,输出通道6,卷积核大小5
        self.conv1 = nn.Conv2d(1, 6, 5)
        # 池化层:窗口大小2,步长2
        self.pool = nn.MaxPool2d(2, 2)
        # 第二个卷积层:输入通道6,输出通道16,卷积核大小5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 第一个全连接层:输入特征数(16*5*5),输出特征数120
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        # 第二个全连接层:输入特征数120,输出特征数84
        self.fc2 = nn.Linear(120, 84)
        # 第三个全连接层(输出层):输入特征数84,输出特征数10(数字类别数)
        self.fc3 = nn.Linear(84, 10)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = self.pool(x)
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        output = F.log_softmax(x, dim=1)
        return output


# 设置超参数
batch_size = 64
learning_rate = 0.001
num_epochs = 10

# 加载MNIST数据集
transform_train = transforms.Compose(
    [
        # 随机旋转图片
        transforms.RandomHorizontalFlip(),
        # 将图片尺寸resize到32x32
        transforms.Resize((32, 32)),
        # 将图片转化为Tensor格式
        transforms.ToTensor(),
        # 正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
        transforms.Normalize((0.1307,), (0.3081,)),
    ]
)

transform_test = transforms.Compose(
    [
        # 将图片尺寸resize到32x32
        transforms.Resize((32, 32)),
        # 将图片转化为Tensor格式
        transforms.ToTensor(),
        # 正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
        transforms.Normalize((0.1307,), (0.3081,)),
    ]
)

train_dataset = datasets.MNIST(
    root="./data", train=True, download=True, transform=transform_train
)
test_dataset = datasets.MNIST(
    root="./data", train=False, download=True, transform=transform_test
)

# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 初始化模型、损失函数和优化器
model = LeNet5()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 后向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # 每100个batch打印一次训练状态
        if (i + 1) % 100 == 0:
            print(
                f"Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{len(train_loader)}], Loss: {loss.item():.4f}"
            )

# 测试模型
model.eval()  # 设置为评估模式
with torch.no_grad():  # 关闭梯度计算
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    # 打印准确率
    print(f"Accuracy of the network on the 10000 test images: {100 * correct / total}%")

# 保存模型参数
torch.save(model.state_dict(), "lenet5_mnist.pth")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值