【风电功率预测】【多变量输入单步预测】基于CNN-SVM的风电功率预测研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

研究背景

方法概述

研究步骤

挑战与未来方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN(卷积神经网络)和SVM(支持向量机)的风电功率预测研究,特别是针对多变量输入单步预测的场景,是一个结合了深度学习和传统机器学习优势的有趣课题。以下是对这一研究领域的简要概述:

研究背景

风能作为一种重要的可再生能源,在全球能源结构转型中扮演着关键角色。然而,由于风力的不稳定性,准确预测风电功率对于电力系统的稳定运行、能源调度和市场交易至关重要。传统的风电功率预测方法如统计模型(如ARIMA)和物理模型(如天气预报结合风电场特性)在处理复杂非线性关系和高维数据时存在局限性。因此,引入深度学习和机器学习方法来提高预测精度成为一种趋势。

方法概述

CNN部分

  • 局部特征提取:CNN通过卷积层自动学习输入数据的局部特征,这对于识别风速、风向、温度等气象因素对风电功率的影响尤为有效。
  • 权值共享:减少模型参数数量,降低过拟合风险,并加速训练过程。
  • 池化操作:通过下采样减少数据维度,提取更加鲁棒的特征,同时保持对时间序列数据变化的敏感性。

SVM部分

  • 分类与回归:SVM原本是一种分类算法,但也可以用于回归问题(称为SVR,支持向量回归)。在风电功率预测中,SVR能够基于CNN提取的特征进行非线性回归,提高预测精度。
  • 高维数据处理:SVM在高维空间中表现良好,能够处理由CNN提取的复杂特征。

结合CNN-SVM

  • 多变量输入:风电功率预测通常涉及多个输入变量,如风速、风向、温度等。这些变量通过CNN进行处理,提取出关键特征。
  • 单步预测:基于提取的特征,使用SVM进行单步风电功率预测。

研究步骤

  1. 数据收集与预处理:收集风电场的历史数据,包括风速、风向、温度等气象数据及对应的风电功率数据。对数据进行清洗、归一化等预处理工作。
  2. 模型构建
    • 设计CNN架构,包括卷积层、池化层等,用于提取输入数据的局部特征。
    • 将CNN的输出作为SVM的输入,构建SVM回归模型。
  3. 模型训练:使用历史数据训练CNN-SVM模型,通过交叉验证等技术评估模型性能,调整超参数。
  4. 预测与评估:用训练好的模型对未来一段时间内的风电功率进行预测,并通过均方误差(MSE)、均方根误差(RMSE)等指标评估预测精度。

挑战与未来方向

尽管基于CNN-SVM的风电功率预测方法具有许多优点,但仍面临一些挑战:

  • 数据质量:实际应用中数据可能存在缺失、噪声等问题,需要更先进的数据处理策略。
  • 模型复杂度:深度学习模型往往需要大量计算资源和较长的训练时间,优化模型结构和算法是未来研究的重点。
  • 不确定性处理:风能的自然特性导致预测结果存在不确定性,如何在模型中融入不确定性分析是一个研究前沿。

结论

基于CNN-SVM的风电功率预测研究通过结合深度学习和传统机器学习的优势,有望提高风电功率预测的准确性和鲁棒性。未来,随着技术的不断进步和算法的持续优化,该方法将在风电领域发挥更大的作用,为电力系统的稳定运行和可再生能源的有效利用提供有力支持。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值