排序分析(RDA和CCA)

简单介绍

排序分析(Ordination analysis)的过程就是在一个可视化的低维空间或平面重新排列这些样本,使得样本之间的距离最大程度地反映出平面散点图内样本之间的关系信息,使得排序轴能够反映一定的生态梯度。包括:

  1. 只使用物种组成数据的排序称作非限制性排序(unconstrained ordination)

    • 主成分分析(principal components analysis,PCA)

    • 对应分析(correspondence analysis, CA)

    • Multiple Correspondence Analysis (MCA):MCA是CA的改良版本,可分析2个以上的变量。

    • 去趋势对应分析(Detrended correspondence analysis, DCA)

    • 主坐标分析(principal coordinate analysis, PCoA)

    • 非度量多维尺度分析(non-metric multi-dimensional scaling, NMDS)

  2. 同时使用物种和环境因子组成数据的排序叫作限制性排序(constrained ordination)

    • 冗余分析(redundancy analysis,RDA)

    • 典范对应分析(canonical correspondence analysis, CCA)

    • db-RDA

Tips:通常采用PCA处理环境数据,采用CA处理群落数据;RDA和CCA是多元分析(PCA,CA)和线性回归的结合,研究生物和环境之间的关系。

如何选择RDA和CCA?

RDA或CCA的选择问题:RDA是基于线性模型,CCA是基于单峰模型。一般我们会选择CCA来做直接梯度分析。但是如果CCA排序的效果不太好,就可以考虑是不是用RDA分析。RDA或CCA选择原则:先用species-sample资料做DCA分析,看分析结果中Lengths of gradient 的第一轴的大小,如果大于4.0,就应该选CCA,如果3.0-4.0之间,选RDA和CCA均可,如果小于3.0, RDA的结果要好于CCA。

出处:   简书       吴十三和小可爱的札记   链接:https://www.jianshu.com/p/23adee54a0e5

知乎   在线分析丨相关性分析——RDA/CCA分析  链接:在线分析丨相关性分析——RDA/CCA分析 - 知乎 (zhihu.com)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值