简单介绍
排序分析(Ordination analysis)的过程就是在一个可视化的低维空间或平面重新排列这些样本,使得样本之间的距离最大程度地反映出平面散点图内样本之间的关系信息,使得排序轴能够反映一定的生态梯度。包括:
-
只使用物种组成数据的排序称作非限制性排序(unconstrained ordination)
-
主成分分析(principal components analysis,PCA)
-
对应分析(correspondence analysis, CA)
-
Multiple Correspondence Analysis (MCA):MCA是CA的改良版本,可分析2个以上的变量。
-
去趋势对应分析(Detrended correspondence analysis, DCA)
-
主坐标分析(principal coordinate analysis, PCoA)
-
非度量多维尺度分析(non-metric multi-dimensional scaling, NMDS)
-
-
同时使用物种和环境因子组成数据的排序叫作限制性排序(constrained ordination)
-
冗余分析(redundancy analysis,RDA)
-
典范对应分析(canonical correspondence analysis, CCA)
-
db-RDA
-
Tips:通常采用PCA处理环境数据,采用CA处理群落数据;RDA和CCA是多元分析(PCA,CA)和线性回归的结合,研究生物和环境之间的关系。
如何选择RDA和CCA?
RDA或CCA的选择问题:RDA是基于线性模型,CCA是基于单峰模型。一般我们会选择CCA来做直接梯度分析。但是如果CCA排序的效果不太好,就可以考虑是不是用RDA分析。RDA或CCA选择原则:先用species-sample资料做DCA分析,看分析结果中Lengths of gradient 的第一轴的大小,如果大于4.0,就应该选CCA,如果3.0-4.0之间,选RDA和CCA均可,如果小于3.0, RDA的结果要好于CCA。
出处: 简书 吴十三和小可爱的札记 链接:https://www.jianshu.com/p/23adee54a0e5
知乎 在线分析丨相关性分析——RDA/CCA分析 链接:在线分析丨相关性分析——RDA/CCA分析 - 知乎 (zhihu.com)