当我们遇到一个很久没见的朋友或同事时,常常会有以下类似的对话:
你最近在忙些什么? 数字孪生。 真有趣!我听说过很多关于它的事情。你如何定义数字孪生? 随后会有一个简短的解释:
我无法理解数字孪生。有人说它是一种数字表示,而其他人则包括了人工智能和机器学习。我老实说认为它是人们创造的一个新流行词。
这种在研究人员和从业者之间关于数字孪生(DT)概念的混淆激发了这项工作。我们首先提供更多关于问题的背景,然后回顾文献中“数字孪生”一词的多种用法,最后提出一个统一这些现有观点的概念模型,从而缓解了这种混淆。
困惑
研究人员和从业者试图通过不同方式定义DT来缓解这种困惑。然而,似乎每种定义都是直接从定义者心中的例子和应用中发展出来的。有些人认为DT意味着具有规定性和预测能力的复杂实时更新数字模型(Gabor等人,2016;Glaessgen和Stargel 2012),而其他人则认为它意味着简单的数字表示(Canedo 2016;Schroeder等人,2016)。此外,Boje等人(2020)指出,这个领域几乎没有研究,导致重新品牌和重新使用像预测、仿真、人工智能(AI)和机器学习(ML)这样的新兴技术能力,作为DT的必要组成部分,迫使从业者适应这些技术,而没有真正理解它们所声称的好处(Love、Matthews和Zhou 2020)
Agrawal、Singh和Fischer(2022)进一步提供了这个问题实际重要性的证据,他们分析了关键词“Digital Twin”的谷歌搜索趋势。他们使用网络工具来抓取最常见用户查询的数据。基于分析,作者发现关于DT的现有困惑有非常有力的证据。例如,关于DT的一些最常搜索的查询是:“DT与赛博物理系统有何不同?”,“DT与信息模型有何不同?”,“如何在DT中使用AI?”,进一步证实了我们观察到的问题和这项工作的动机。
为了缓解这种困惑,这项工作提出了一个概念框架,可以帮助研究人员和从业者理解DT。为此,框架提出了两个基本问题(见图2.1):在DT中,(1)什么是数字的?和(2)我们在孪生什么?这些问题的平凡性常常使它们被忽视。
2.3 背景
本节分为三个部分。第一部分简要描述了数字孪生(DTs)的简短历史。在第二部分中,我们使用文献中对DTs的说明性定义,并通过我们前面概述的两个基本问题来检验它们:什么是数字的?我们在孪生什么?这将帮助读者更好地理解DT定义中存在的多样性,从而认识到提出我们两个基本问题的必要性。最后,在第三部分,我们总结了文献中的空白。
2.3.1 DT的历史
让我们快速看一下如图2.2所示的DTs发展时间线。作为1960年代美国宇航局(NASA)阿波罗计划的一部分,至少建造了两个相同的航天器,其中一个留在地球上,称为孪生(Schleich等人,2017)。孪生在飞行准备期间被广泛用于培训、运行仿真,并在关键时刻协助宇航员。在这个意义上,每一个模拟现实世界运行条件的原型都可以被视为一个孪生。
然而,像NASA对其飞机所做的那样,为每个资产/实体构建一个物理孪生几乎是不切实际的(而且成本高昂)。因此,“孪生”的概念被扩展到数字领域,创建一个数字孪生,使孪生变得实用和成本效益。在这方面,Michael Grieves首次在大学课程中引入了将物理对象虚拟孪生的概念。
"数字孪生"这个词是在2011/12年附加到Grieves定义的概念上的。NASA随后在2012年首次给出了数字孪生(DT)的定义:"一种集成了多物理、多尺度、概率性的仿真,用于车辆或系统,它利用最佳可用的物理模型、传感器更新、机队历史等信息,来镜像其飞行孪生体的生命周期。"
由于其实用性,这个概念随后并没有局限于航空航天行业,而是扩展到了制造业、建筑和施工等多个行业。它被用于多种应用,包括产品生命周期优化、生产计划与控制,以及预测和管理维护等。
什么是数字的?我们在孪生什么?
为了定位我们的理解,让我们通过两个透镜来检验和比较文献中一些现有的数字孪生(DT)定义:什么是数字的?我们在孪生什么?
-
NASA的DT(Glaessgen和Stargel,2012年):“数字孪生是一个集成的多物理、多尺度、概率性仿真,用于车辆或系统,它使用最佳可用的物理模型、传感器更新、机队历史等,来镜像其飞行孪生体的生命周期。”
- 数字对于NASA的定义意味着什么?具备多物理、多尺度、概率性仿真能力。
- NASA定义中正在孪生的是什么?物理产品或系统(例如,飞机)。
-
Rios的DT(Rios等人,2015年):“物理产品的数字对应物。”
- 数字对于Rios的定义意味着什么?数字表示。
- Rios定义中正在孪生的是什么?物理产品。
-
buildingSMART的DT(buildingSMART International,2021年):
- 数字孪生(DT)——也被称为数字影子、数字副本或数字镜像——是物理资产的数字表示。
- 物理和数字孪生在PBOD生命周期和使用阶段定期交换数据。像AI、ML、传感器和物联网(IoT)这样的技术允许动态数据收集和实时数据交换发生。
- 数字对于buildingSMART的定义意味着什么?由AI、ML、传感器和IoT等技术补充的数字表示。
- buildingSMART定义中正在孪生的是什么?物理产品。
-
IBM的DT(IBM,2021年):“数字孪生是跨越其生命周期的对象或系统的虚拟表示,它从实时数据更新,并使用仿真、机器学习和推理来帮助决策。”
- 数字对于IBM的定义意味着什么?跨越生命周期的实时数字表示,使用仿真、ML和推理。
- IBM定义中正在孪生的是什么?对象或系统。
-
GE的DT(GE,2021年):“物理资产、系统或过程的软件表示,旨在通过实时分析来检测、预防、预测和优化,以提供商业价值。”
- 数字对于GE的定义意味着什么?用于检测、预防、预测和优化的软件表示。
- GE定义中正在孪生的是什么?物理资产、系统或过程。
-
PwC的DT(PricewaterhouseCoopers,2021年):“数字孪生捕获了一个组织的虚拟模型,并有助于加速战略。该模型可以识别阻碍或促进战略执行的要素,并根据嵌入的模式识别提出具体建议。”
- 数字对于PwC的定义意味着什么?具有模式识别的虚拟表示。
- PwC定义中正在孪生的是什么?组织。
-
Gartner的DT(Gartner,2021年):“数字孪生是现实世界实体或系统的数字表示。数字孪生的实现是一个封装的软件对象或模型,它镜像一个独特的物理对象、过程、组织、个人或其他抽象。”
- 数字对于Gartner的定义意味着什么?数字表示。
- Gartner定义中正在孪生的是什么?物理对象、过程、组织、个人或其他抽象。
通过创建词云来汇总Negri、Fumagalli和Macchi(2017年)在文献综述中收集的关于DT的不同定义,最常见的词汇是“物理的”和“产品”,这反映出对以产品为中心的数字孪生(DT)的偏好。然而,也有一些其他定义认为,DT的潜力不应仅限于物理有形产品,而应扩展到流程、系统和组织。例如,PwC认为DT捕获了组织的虚拟模型。Gartner提出了DT最广泛的定义之一,它表明DT可以是物理对象、过程、组织、个人或其他抽象的数字表示。Parmar、Leiponen和Thomas认为,DT可以是一个随着组织演变而更新和变化的组织的活生生的数字仿真模型,并且可以允许全面测试情景,以预测潜在策略和策略的表现。Papacharalampopoulos和Stavropoulos展示了流程DT在制造业中优化热过程的应用。
- 数字孪生框架
-
数字视角(What Is Digital?)
- 定义与应用
- 数字定义的模糊性与多义性
- 不同行业对数字能力的不同需求
- 选择策略
- 从业者选择数字能力的主观性与风险
- 避免次优选择与利益相关者之间的不一致
- 所需知识与技术
- 理解数字技术的多样性与复杂性
- 评估不同数字技术对业务的适用性
- 数字化类型
- Gartner的四步层级:描述、诊断、预测、处方
- 技术示例:物联网、AR/VR、无人机、3D扫描
- 数字化程度
- 自动化的连续体:从无到全自动化
- 人类与DT的协作与任务分配
- 所需知识与技术
- 评估自动化水平对业务流程的影响
- 理解不同自动化阶段的技术需求
- 定义与应用
-
孪生视角(What Are We Twinning?)
- 现实与理想
- 理想中的全面数字化与现实的差距
- 部分数字化的可行性与优势
- 所需知识与技术
- 理解数字化转型的阶段性与复杂性
- 确定数字化优先级与策略
- 系统边界
- 定义DT的适用系统边界与控制范围
- 本地优化与全局优化的平衡
- 所需知识与技术
- 法律、合同知识在系统边界定义中的作用
- 跨学科协作的策略与方法
- 洞察力的详细程度
- DT提供的洞察力规模与深度
- 系统边界对数据需求的影响
- 所需知识与技术
- 数据分析与解释能力
- 洞察力转化为行动的策略
- 现实与理想
-
孪生实体类型(Types of Entities Twinned)
- 生产活动三要素(POP)
- 产品、组织、流程的数字化孪生
- 单一要素与综合孪生的优势对比
- 所需知识与技术
- 跨学科知识整合能力
- 识别与优化产品、组织、流程的关键性能指标
- 生产活动三要素(POP)
-
弹簧模型(Spring Representation)
- 相互影响
- 数字与孪生组件的动态关系
- 决策的迭代过程与反馈循环
- 所需知识与技术
- 系统思维与动态分析能力
- 迭代方法论与持续改进策略
- 相互影响
-
案例研究
- 建筑项目中的DT应用
- 项目全生命周期的DT应用
- 本地与全局优化的实例分析
- 所需知识与技术
- 建筑行业特定的数字化技术
- 项目管理与协调技术
- 高速公路维护中的DT应用
- 维护流程的数字化优化
- 预测性维护的策略与实施
- 所需知识与技术
- 交通基础设施维护的专业知识
- 预测性分析与风险管理
- 流程优化与组织优化的DT应用
- 流程效率与组织结构的数字化映射
- 优化策略的制定与执行
- 所需知识与技术
- 流程再造与组织行为学
- 高级分析工具与决策支持系统
- 建筑项目中的DT应用
-
关键问题
- 如何选择适合的数字化类型?
- 如何确定合适的数字化程度与系统边界?
- 如何选择孪生实体的类型和范围?
-
所需知识与技术
- 决策分析与问题解决技巧
- 业务需求与技术能力之间的匹配分析
-
技术与策略
- 描述、诊断、预测、处方的技术应用
- 不同类型数字技术的适用场景与限制
- 所需知识与技术
- 技术评估与选择的方法论
- 技术集成与创新策略
- 物联网、AR/VR、无人机等技术在描述层的应用
- 描述层技术在数据收集与可视化中的作用
- 所需知识与技术
- 数据采集技术与信息管理
- 可视化技术与用户界面设计
- 数据分析、因果推断、AI在诊断和预测层的应用
- 高级分析技术在问题识别与预测中的重要性
- 所需知识与技术
- 统计学、数据科学与机器学习知识
- 因果推断方法与模型构建
- 描述、诊断、预测、处方的技术应用
-
案例故事样例
在一个充满活力的城市边缘,Firm X赢得了一份令人瞩目的合同,负责维护和管理一条超过60英里的国家高速公路。这条高速公路是城市的生命线,但它也是一条充满挑战的道路。Bob,作为这个项目的管理者,面对着一系列严格的规则和高昂的违规罚款,这些规则关乎道路裂缝、交通标志、道路标线以及路边的植被和空间。
Bob知道,要想在这个项目中取得成功,他需要超越传统的维护方法。他开始探索数字孪生技术(DT),希望能够通过这项前沿技术来提升道路的维护和管理效率。然而,当他向他的团队和同事们寻求意见时,他发现每个人对DT的理解和期望都大相径庭。
Mike,一个负责日常道路运营的同事,认为DT应该能够实时监控道路状况,成为一个虚拟的、与实体道路同步的数字副本。而Jay,Bob的另一位同事,提出DT不仅要能够收集数据,还应该具备分析能力,能够预测未来的道路状况,为决策提供支持。Tom,Bob的一个朋友,甚至提出DT应该具备在面对不确定性情况,比如COVID-19大流行时的适应能力。
面对这些不同的声音,Bob意识到他需要一个结构化的方法来统一团队对DT的理解。他决定运用一个新框架来指导团队进行头脑风暴,确保每个人都能对DT的概念达成共识,并明确它在他们项目中的具体意义。
Bob组织了一系列的工作坊,首先定义了项目的目标和挑战,然后引导团队成员表达他们对DT的看法和期望。通过开放的讨论,Bob帮助团队识别了共同的需求点,并逐步缩小了对DT功能的理解差异。
随着讨论的深入,Bob的团队开始围绕如何利用DT进行数据收集、分析和预测达成共识。他们决定开发一个能够实时更新的DT,不仅能够反映当前的道路状况,还能够通过分析历史和实时数据来预测潜在的问题和维护需求。
Bob还意识到,为了使DT真正成为一个有效的决策支持系统,他们需要集成先进的分析工具和机器学习模型。这样,DT不仅能够提供关于道路状况的洞察,还能够在面对突发事件时提供适应性建议。
最终,Bob和他的团队创建了一个既能够实时反映道路状况,又能够提供预测和决策支持的DT。这个DT帮助他们有效管理了高速公路的维护工作,避免了潜在的罚款,并提高了道路的安全性和使用寿命。通过这个案例,Bob和他的团队展示了如何将数字孪生技术应用于实际问题,并取得了显著的成效。