分类模型评估指标及ROC曲线和PR曲线

本文详细介绍了分类模型评估的关键指标,如准确率、精确率、召回率、F1分数以及ROC曲线和PR曲线的概念。特别关注了KNN算法在不同K值下的ROC曲线分析,强调了选择合适K值对模型性能的影响。
摘要由CSDN通过智能技术生成

目录

分类模型评估指标

分类模型:

为什么要评估分类模型:

常见的分类模型:

准确率 (Accuracy):

精确率(Precision): 就是预测正确的正例数据占预测为正例数据的比例。

召回率(Recall):

ROC曲线和PR曲线对比:

ROC曲线:

PR曲线:

ROC曲线和PR曲线的差异:

KNN算法对不同K值下的ROC曲线的分析:

数据集准备:

KNN分类器并训练并绘制ROC曲线:

K=1:

K=3:

K=5:

不同K值的分析:


分类模型评估指标

分类模型:

分类模型是机器学习的一种类型,它的任务是通过学习样本的特征来预测样本的类别。

为什么要评估分类模型:

评估分类模型的性能非常重要,因为它能帮助我们了解模型的表现如何,以及模型在实际应用中的可能表现。通过使用不同的评估指标,可以从不同的角度理解模型的性能。作为使用场景最为广泛的机器学习模型,其评估指标也随着使用场景的拓展而不断丰富,例如,可以通过查看模型的准确率来了解模型正确预测的比例,还有精确度、召回率、F1分数、受试者特征曲线(ROC-AUC)、真阳性率(True Positive Rate, TPR)、假阳性率(False Positive Rate, FPR)等,不同评估指标有对应的不同的计算方法,同时也对应着不同的使用场景。

常见的分类模型:

  • 准确率(Accuracy):正确分类样本数占总样本数的比例。
  • 精确率(Precision/P)、召回率(Recall/R):在所有预测为正例的样本中,有多少是真正正例(精确率);在所有真实正例中,有多少被成功预测为正例(召回率)。
  • F1分数(F1 Score):精确率和召回率的调和平均数,用来衡量模型在精确性和全面性上的平衡程度。
  • ROC曲线:ROC曲线是用来验证一个分类器(二分)模型的性能的。其工作原理是,给出一个模型,输入已知正负类的一组数据,并通过对比模型对该组数据进行的预测,衡量这个模型的性能。
  • 真阳性率(True Positive Rate, TPR)、假阳性率(False Positive Rate, FPR):TPR是召回率的别称,而FPR是1减去特异度(Specificity)。
准确率 (Accuracy):
Accuracy=\frac{TP+TN}{TP+TN+FP+FN}=\frac{TP+TN}{P+N}

分母是全部四种数据;分子中第一个字母是 T 表示 "算法预测正确了"。

准确率有一个缺点,就是数据的样本不均衡,这个指标是不能评价模型的性能优劣的。

假如一个测试集有正样本999个,负样本1个。我们设计的模型是个无脑模型,即把所有的样本都预测为正样本,那么模型的Accuracy为99.9%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。


精确率(Precision): 就是预测正确的正例数据占预测为正例数据的比例。

Precision=\frac{TP}{TP+FP}

分母中, TP表示 : 算法预测正确 & 预测的是正例,FP表示 : 算法预测错误 & 预测的是正例(实际是负例)

召回率(Recall):

recall=\frac{TP}{TP+FN}  

召回率(Recall)是指分类器正确预测为正例的样本数量(True Positives,TP)与所有实际正例的样本数量(True Positives + False Negatives,TP + FN)的比值。召回率表示有多少真正的正例被成功预测出来了。

F1分数(F1 Score)

 F1分数是精确率和召回率的调和平均值,用于综合考虑分类器的性能。它的计算公式如下:

        F1分数 = 2 * (精确率 * 召回率) / (精确率 + 召回率)

ROC曲线和PR曲线对比:

ROC曲线:

接收者操作特征曲线(Receiver Operating Characteristic Curve),通过改变决策阈值,以真阳性率(TPR)为纵坐标,假阳性率(FPR)为横坐标绘制的曲线。ROC曲线越靠近左上角(0,1)点,模型性能越好。

PR曲线:

精确率-召回率曲线,纵坐标为精确率,横坐标为召回率。在类别不平衡时,尤其是正例较少的情况,PR曲线能更准确地反映出模型性能。

ROC曲线和PR曲线的差异:

  • ROC曲线不依赖于正负样本比例,适合各种样本分布情况下的性能评估。
  • PR曲线在正负样本极度不平衡时更有意义,因为此时ROC曲线上升趋势可能会过于平缓,难以区分模型的好坏。

KNN算法对不同K值下的ROC曲线的分析:

数据集准备:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import precision_recall_curve, roc_curve, auc

# 生成数据集
X, y = make_classification(n_samples=1000, n_classes=2, n_features=10, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

KNN分类器并训练并绘制ROC曲线:

# 定义KNN分类器
knn = KNeighborsClassifier(n_neighbors=2)

# 训练模型
knn.fit(X_train, y_train)

# 预测测试集
y_pred = knn.predict(X_test)

# 计算PR曲线和ROC曲线
precision, recall, _ = precision_recall_curve(y_test, y_pred)
fpr, tpr, _ = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)


# 绘制ROC曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='red', lw=2, label='ROC Curve (AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()

K=1:

K=3:

K=5:

不同K值的分析:

    较小的k值可能导致模型过拟合局部数据结构,而较大的k值可能会导致模型趋于保守和平滑。因此,在实际应用中,选择合适的k值对于优化模型性能至关重要。通过绘制ROC曲线,可以直观地看出这种影响,并据此选择一个在特定任务下具有最佳整体性能的k值。

ROC曲线(Receiver Operating Characteristic Curve)和PR曲线Precision-Recall Curve)是在二分类问题中常用的评估模型性能的工具,它们有一些区别和特点。 1. 目标不同: - ROC曲线关注的是真正例率(True Positive Rate,即召回率)与假正例率(False Positive Rate)之间的权衡。ROC曲线展示了在不同阈值下,分类器的敏感性和特异性之间的关系。 - PR曲线则关注的是精确率(Precision)与召回率(Recall)之间的权衡。PR曲线展示了在不同阈值下,分类器的预测准确性和查全率之间的关系。 2. 数据分布不平衡时的表现: - ROC曲线对于数据分布不平衡的情况下相对稳定,因为它使用了假正例率作为横轴,而假正例率不受真实负例数量的影响。 - PR曲线在数据分布不平衡时更能准确地反映分类器的性能,因为它使用了精确率作为纵轴,能够展示在正例中的正确预测比例。 3. 敏感性不同: - ROC曲线能够展示分类器在整个概率范围内的性能,对于不同的阈值都可以进行评估。 - PR曲线则更关注分类器在高概率(高置信度)区域的性能,对于低概率的预测结果较为敏感。 总而言之,ROC曲线主要用于评估分类器的整体性能,特别是在样本不平衡的情况下,而PR曲线则更适用于评估分类器在正例预测方面的性能。根据具体问题和需求,选择合适的曲线进行模型性能评估
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值