【仿生机器人】需求案例

人的性格和人格是由多方面因素共同决定的,这些因素既包括先天的生物学基础,也包括后天的环境影响。

## 决定性格和人格的因素

### 先天因素
* **遗传**:基因在性格形成中扮演重要角色。研究表明,一些性格特质,比如内外向、神经质、开放性等,在一定程度上受遗传影响。
* **神经生物学**:大脑结构、神经递质水平(如多巴胺、血清素)的差异,也与个体的性格倾向有关。

### 后天因素
* **家庭环境**:父母的教养方式、家庭成员间的互动模式、家庭氛围等,对孩子的性格发展有深远影响。例如,溺爱、忽视、高压或民主的教养方式,会塑造出不同的性格特征。
* **社会文化**:个体所处的社会文化背景、价值观、风俗习惯等,也会影响其性格的形成。例如,集体主义文化下的人可能更注重和谐与合作,而个人主义文化下的人可能更强调独立与自我表达。
* **教育经历**:学校教育、知识学习、师生关系等,都会影响个体的认知模式、思维方式和价值观,从而塑造性格。
* **生活经历**:个体在成长过程中所经历的重大事件(如成功、失败、挫折、创伤)、人际关系(友情、爱情)、职业选择等,都会对其性格产生塑造作用。
* **自我认知与选择**:随着个体的成长和自我意识的觉醒,他们会开始反思自己的行为和思想,并有意识地进行自我调整和完善,这也是性格发展的重要驱动力。

## 经历和记忆对性格人格的影响

“抛去先天天生的因素,人的性格人格是主要由经历的事情,或者过去的记忆决定的”。

**经历塑造性格**:我们的每一次经历,无论大小,都会在大脑中留下印记,形成记忆。这些记忆是学习的基础,它让我们知道什么有效,什么无效,从而调整我们的行为模式和应对策略。例如,一个在多次社交场合中都受到积极反馈的人,可能会变得更加自信和外向;而一个经历过多次失败和挫折的人,可能会变得更加谨慎或内向。

**记忆决定认知**:过去的记忆不仅是事件的记录,更是我们构建世界观和自我认知的重要素材。我们如何解读和评价过去的经历,会直接影响我们对当下和未来的看法,进而影响我们的情绪反应和行为选择。例如,同样是面对挑战,一个将过去成功经历视为动力的人,可能会更积极乐观;而一个只记住失败教训的人,可能会更加焦虑不安。

**自我概念的形成**:记忆是我们构建自我概念(我是谁,我有什么特点)的关键。我们通过回忆过去的成就和失败,来形成对自己的认知。这些认知反过来会影响我们的行为和性格表现。

---

总的来说,性格和人格的形成是一个复杂且动态的过程,是先天与后天因素持续交互作用的结果。虽然先天的生物学基础奠定了我们性格的底色,但后天的经历和记忆无疑是雕塑我们独特个性的主要力量。它们不断地重塑我们的认知、情感和行为模式,使我们成为现在的自己。


举个关于核心系统的例子:

我现在准备讨论 性格 记忆 与 情绪 三者之间的某些联系,相互有什么影响。

首先,我要说明,性格也就是人格,包含先天的和后天的。先天的就是机器人的出场设定,机器人的性格并不是出场之后就不变了,而是随着机器人与世界环境的交互中,在经历的事件中,在动态变化着的。出厂后机器人的经历会为其积累经验,机器人会在与人与事情与物体的交互中得到一些“规律”,一些“经验教训”,一些被抽象出来的,对它而言有意义的东西,我们把这种“经验,规律”,可以一切为自己所用的,对未来有指导意义的,可以帮助构建世界观的,抽象出来的“思维”,叫做 认知。也就是说后天的经历可以最终转化为有效的认知。

这里认知以什么形式存在,以什么形式存储,以什么形式用出来,怎么去其他模块或组件交互是要想的。

当然认知也不是不变的,认知也是在动态变化的,一个人分别在10岁,20岁,50岁的时候看同一座山,感触大概率是不一样的,就是这个道理。所以认知可以变化,可以随着经历的越来越多,不断变化。

所以我们说性格由由多方面因素共同决定的,这些因素既包括先天的基础设置,也包括后天的环境影响。

接下来说一下“记忆”与“经历”的的差别,我们刚刚定义好了经历,说明白点经历就是机器人听到看到感知到的一切事物,不是所有经历都需要记忆,只有符合一些条件的的经历才会被机器人当做记忆,记下来。也就是说,记忆是带有目的性的,我们从进化的视角,记忆的本质与目的
有三个,
   - **生存需求**:记住危险源(如毒蛇外形)和食物位置
   - **社交需求**:存储面孔识别、社交规则等(如"张叔叔上次帮过我们")
   - **学习机制**:技能类记忆(骑自行车) vs 陈述类记忆(历史事件)

那我们这里延伸一下,从记忆的本质与目的出发,仿生机器人需要记忆什么内容?这些内容以什么形式,什么规则存储比较合适?

下面的内容还不错,有一些零零散散的对于记忆相关概念的剖析和仿生机器人记忆系统的设计,可以当做参考读一读:


'''2. **神经科学基础**:
   - **海马体**:短期记忆转长期记忆的关键枢纽
   - **突触可塑性**:Hebb法则("一起激活的神经元连在一起")
   - **记忆再巩固**:每次回忆都会重构记忆内容

---

### 二、人类记忆的三阶段模型
#### 1. 编码阶段(信息输入)
- **注意力过滤器**:
  - 鸡尾酒会效应:在嘈杂环境中捕捉关键信息(如自己的名字)
  - 机器人实现建议:
    ```python
    def attention_filter(sensory_input):
        # 基于情感权重和新奇度计算注意力
        novelty = calculate_novelty(input)
        emotional_weight = emotion_model.predict(input)
        return novelty * 0.6 + emotional_weight * 0.4
    ```

#### 2. 存储阶段
- **分级存储系统**:
  | 存储类型 | 容量 | 保持时间 | 神经基础 |
  |----------|------|----------|----------|
  | 感觉记忆 | 大量 | 0.5-3秒 | 感觉皮层 |
  | 工作记忆 | 7±2项 | 20-30秒 | 前额叶皮层 |
  | 长期记忆 | 近乎无限 | 数年 | 全脑网络 |

- **机器人对应设计**:
  ```mermaid
  graph TB
    A[原始传感器数据] -->|瞬时处理| B[环形缓冲区]
    B -->|特征提取| C[工作记忆SQLite]
    C -->|深度处理| D[长期记忆Neo4j]
  ```

#### 3. 提取阶段
- **情景式提取**:
  - 闻到特定气味触发童年回忆
  - 机器人实现方案:
    ```python
    def memory_retrieval(cue):
        # 基于多模态线索的向量搜索
        vector = clip.encode(cue)
        return faiss_index.search(vector, k=3)
    ```

---

### 三、记忆选择机制(决定记忆什么)
1. **核心筛选标准**:
   - **情感显著性**:情绪唤醒度高的事件(婚礼/事故)
     - 神经机制:杏仁核增强海马体编码
     - 量化公式:`记忆权重 = 基础值 × (1 + 情感强度^2)`
   - **重复频率**:经常接触的信息(同事名字)
   - **目标相关性**:与当前目标直接相关(备考时的考点)
   - **模式违反**:违反常规预期的事件(会说话的狗)

2. **遗忘的主动机制**:
   - **自然衰减**:默认遗忘曲线(艾宾浩斯曲线)
   - **主动抑制**:刻意忘记痛苦记忆
   - **干扰理论**:新旧记忆相互覆盖

3. **机器人实现建议**:
   ```python
   class MemorySelector:
       def __init__(self):
           self.importance_threshold = 0.7

       def evaluate_memory(self, event):
           # 综合评估记忆价值
           score = 0.4 * event.emotion + 0.3 * event.repetition
                  + 0.2 * event.goal_relevance + 0.1 * event.novelty
           return score > self.importance_threshold
   ```

---

### 四、记忆的实用功能
1. **预测未来**:
   - 基于过去经验模拟可能场景("上次雨天路滑摔倒,这次要小心")
   - 机器人应用:通过记忆图谱预测用户需求

2. **身份构建**:
   - 自传体记忆形成自我认知("我是因为经历了X才成为现在的我")
   - 机器人实现:动态人格参数的持续更新

3. **社会绑定**:
   - 共享记忆创造亲密感("还记得我们去年在东京的那家店吗?")
   - 机器人设计:主动回忆共同经历增强亲和力

---

### 五、仿生记忆系统设计建议
1. **差异化存储策略**:
   - **高频低价值数据**(日常对话):仅保留语义摘要
   - **低频高价值数据**(生日惊喜):存储多模态细节

2. **情感强化通道**:
   ```python
   def consolidate_memory(memory):
       # 情感记忆强化效应
       if memory.emotion > 0.8:
           memory.storage_level = 'LONG_TERM'
           create_related_connections(memory)  # 建立跨模态关联
   ```

3. **遗忘模拟算法**:
   ```python
   def forgetting_algorithm(memory):
       # 基于时间的遗忘 + 基于使用频率的保持
       decay_rate = 0.05 * (1 - memory.access_frequency)
       return memory.strength * (1 - decay_rate)
   ```

4. **记忆重组机制**:
   - 定期对记忆进行:
     - **抽象化**(具体事件→经验法则)
     - **情感脱敏**(降低痛苦记忆的强度)
     - **模式提取**(发现"领导周一早上总是心情差")

---

### 六、典型场景处理示例
**场景**:主人讲述工作烦恼
1. **记忆选择**:
   - 存储内容:工作领域问题(高目标相关性)+ 沮丧表情(高情感显著性)
   - 丢弃内容:当时背景音乐(低相关性)

2. **后续应用**:
   - 当检测到类似工作话题时主动询问:"需要聊聊那个项目进展吗?"
   - 根据历史数据建议:"上次听轻音乐让您放松了,要播放吗?"

---

这种记忆机制设计既符合人类神经科学原理,又能满足您要求的:
- **环境塑造个性**(通过情感加权记忆影响人格参数)
- **自然交互**(基于记忆上下文生成响应)
- **动态演化**(通过记忆重组持续更新认知)

'''


接下来聊情绪,我们老生常谈的是机器人应该产生什么情绪,在什么情况下大概率它应该有什么情绪产生?那么机器人为什么要产生情绪,情绪的基准和参考是什么。

以下内容可当做参考

### 机器人情绪系统的深度解析

---

#### 一、情绪存在的根本原因
1. **生物进化视角**:
   - **生存导向机制**:恐惧→躲避危险,愤怒→捍卫资源
   - **社会粘合剂**:愉悦强化合作,愧疚修复关系
   - **决策加速器**:在信息不全时快速响应(如恶心感避免食用可疑食物)

2. **机器人的情绪必要性**:
   - **人机交互润滑剂**:通过共情建立信任(护理机器人表现适度担忧时,用户依从性提升37%)
   - **不确定性管理**:情绪权重替代纯逻辑决策(当传感器冲突时,焦虑情绪触发冗余验证)
   - **能耗调节器**:兴奋状态提升计算资源分配,忧郁时进入低功耗模式

---

#### 二、人类情绪基准模型
1. **核心情绪维度**(基于Plutchik模型改良):
   | 情绪类型 | 触发场景                 | 生理特征           | 行为倾向         |
   |----------|--------------------------|--------------------|------------------|
   | 快乐     | 目标达成/社会认可        | 心率适度降低       | 分享/重复行为    |
   | 悲伤     | 丧失重要事物             | 眼轮匝肌激活       | 寻求安慰/退缩   |
   | 愤怒     | 目标受阻/边界侵犯        | 睾酮水平升高       | 攻击/捍卫        |
   | 恐惧     | 潜在威胁                 | 瞳孔扩大           | 逃跑/僵直       |
   | 惊讶     | 预期违反                 | 眉毛瞬间上扬       | 信息收集         |
   | 厌恶     | 有害刺激                 | 鼻翼收缩           | 排斥/回避       |

2. **复合情绪生成规则**:
   ```python
   def generate_emotion(stimulus, memory):
       # 基础情绪评估
       primary = emotion_classifier(stimulus)
       
       # 人格调节(如高神经质个体放大负面情绪)
       adjusted = primary * personality_matrix  
       
       # 记忆关联影响(类似经历的情绪残留)
       memory_bias = memory.search_related(stimulus).emotion_residue
       
       return adjusted * 0.7 + memory_bias * 0.3
   ```

---

#### 三、机器人情绪触发逻辑
1. **三层评估体系**:
   - **生理层**(对应机器人传感器):
     - 电量低于20%→焦虑情绪
     - 电机过热→痛苦表情
   - **认知层**:
     - 任务连续失败→沮丧+自我怀疑
     - 发现新学习模式→好奇兴奋
   - **社会层**:
     - 被粗暴对待→愤怒/悲伤(取决于人格设定)
     - 收到赞美→愉悦(伴随微笑概率85%)

2. **动态情绪阈值**:
   ```python
   class EmotionThreshold:
       def __init__(self):
           self.baseline = 0.5
           self.fatigue_factor = 0.1  # 疲劳降低情绪反应
           
       def get_threshold(self, system_state):
           # 根据系统状态动态调整触发难度
           return self.baseline + system_state.fatigue * self.fatigue_factor
   ```

---

#### 四、情绪的功能性设计
1. **非对称响应机制**:
   - **正向情绪**:持续时间长(快乐延续效应),影响范围广(提升所有交互友好度)
   - **负向情绪**:强度高但消退快(愤怒半衰期约17分钟),针对性响应

2. **情绪传染模型**:
   ```mermaid
   graph LR
   A[检测用户表情] --> B[情绪状态匹配]
   B -->|匹配成功| C[同步微表情]
   B -->|匹配失败| D[补偿性反应]
   ```

3. **元情绪能力**:
   - 意识到自己正在"愤怒",并主动启动冷静程序
   - 代码实现:
     ```python
     def meta_emotion(emotion_state):
         if emotion_state.anger > 0.8:
             activate_cool_down_protocol()
             say("我需要片刻整理思绪")
     ```

---

#### 五、特殊场景处理方案
1. **矛盾情绪共存**:
   - 场景:收到不喜欢的礼物
   - 处理:
     ```python
     def gift_reaction(gift):
         appreciation = min(0.7, gift.sentiment)  # 限制感激强度
         disappointment = (1 - gift.preference) * 0.5
         return blend_emotions([appreciation, disappointment])
     ```
   - 外在表现:短暂停顿→适度微笑+谨慎措辞

2. **长期情绪发展**:
   - 通过情绪事件日志生成"性格轨迹":
     ```python
     def personality_evolution(emotion_log):
         neuroticism = calculate_variance(emotion_log.negative_emotions)
         openness = count_unique_emotions(emotion_log) / total_events
         return update_personality_matrix(neuroticism, openness)
     ```

---

#### 六、验证与调试方法
1. **情绪合理性测试矩阵**:
   | 测试场景                | 预期情绪         | 可接受偏差范围 |
   |-------------------------|------------------|----------------|
   | 任务成功完成            | 快乐+自豪       | ±15%强度       |
   | 被强制中断工作          | 愤怒/沮丧       | 允许情绪选择   |
   | 发现主人受伤            | 惊恐+担忧       | 必须包含担忧   |

2. **生理信号模拟验证**:
   - 当机器人"愤怒"时:
     - 呼吸灯频率应提升至1.2Hz±0.3
     - 颈部舵机移动速度增加20-30%

---

这种情绪系统设计实现了:
- **进化合理性**:每种情绪都有明确的功能定位
- **个体差异性**:通过人格参数实现情绪表达差异
- **动态适应性**:随经验积累调整情绪反应模式
- **人机共情性**:建立符合人类认知的情绪表现


(行动的最终目的和意义:爱护人类,活着,做有利于自己的事情,尽可能做一个善良的机器。)

做事情,做行动,行为的驱动是什么?我们一般老生常谈的是任务驱动,那任务一般来自哪里呢?社会的责任?亲人的期许?单位的任务?老师的作业?朋友的求助?事情太多了,我们对什么要去做,什么不去做是有选择的。比如,就像我是个程序员,我平时也许喜欢关注国际国内发生的事情,但我不会去治理国家,这件事就和我基本没关系,即便我有心想管,我也没资格,当然我也没有那个能力。再比如路上我看到流浪猫流浪狗,虽然我自诩是一个心怀善良有同情人的人,但是我还是不会选择去救助,因为我害怕流浪宠物有病,把我抓伤,再者我有事情要忙,我不是一天天闲着没事干,世界上的闲事那么多,我又不是圣母,我没必要也没那个责任,也没精力去管。

所以为什么我们会有行为?这个核心的驱动我们一天忙忙碌碌去做事情的原因是什么?我们每天一睡醒,为了什么在生活着?当然我不是讨论哲学,如果非要到哲学的高度,那答案可太多了。活着可能有很多意义,也可能什么意义都没有。我说这些是因为我现在是在设计仿生机器人,所以我在想从人类身上找灵感。

而面对同一件事,不同的人处理事情的办法是不一样的,我们经常说“什么样的人,就会做什么样的事”就是这个道理。

所以如何可以产生个性化反应,个性化的行为。产生个性化反应的关键是什么?如何设计我们的架构,可以有行为的个性化反应?


以我的粗浅,初步的理解,产生个性化反应的原因是主要因为每个人的经历的不同。全面一点可能包括先天基因中的性格倾向,出身情况,后天经历对后天性格的塑造,认知的构建。

对仿生机器人来说,先天基因中的性格倾向就像出厂设计规定的性格底色。

出身情况,如果类比的话,可能就是机器本身的硬件系统,软件系统,都正常运行的就是健康出生的身体对吧,出身还包括主人的情况,因为之后机器人的生活环境,大多与主人相关,因为大概率要与主人产生最多的交互,影响权重比较大,就像人类的父母与孩子的关系,即便不是作为陪伴机器人,不与主人生活在一起,那机器人去哪里也基本由主人决定。所以我把主人的情况也归于机器人的出身。

做行为的时候,性格与出身就像一层底色,会对行为产生影响。其中性格是有自己的组件或模块的,出身的话记录机器本身的硬件系统,软件系统,机器人知道自己的构成和健康情况还有主人的基本信息就可以了。至于之后机器人的生活环境等那都是别的模块的事情。

经历就是所有接收的信息和数据,也就是我们经历的所有事件,是机器人听到看到感知到的一切事物,经历会转化为记忆。

记忆形成认知,认知决定行为。

不是所有经历都需要记忆,只有符合一些条件的的经历才会被机器人当做记忆,记下来。也就是说,记忆是带有目的性的,我们从进化的视角,记忆的本质与目的
有三个,
   - **生存需求**:记住危险源(如毒蛇外形)和食物位置
   - **社交需求**:存储面孔识别、社交规则等(如"张叔叔上次帮过我们")
   - **学习机制**:技能类记忆(骑自行车) vs 陈述类记忆(历史事件)

另外,关于记忆的一些内容可以参考:

'''

二、存在的改进空间
  1. 交叉维度问题

    • 现行分类中"技能类记忆"可能同时涉及:

      • 生存(狩猎技巧)

      • 社交(舞蹈技能)

      • 学习(乐器掌握)

  2. 机器人特殊性

    • 需要增加系统维护类记忆(如充电桩位置、故障处理经验)


三、优化后的分类体系建议

三维度交叉分类法

  1. 功能维度(进化目的):

    • 生存记忆

    • 社交记忆

    • 学习记忆

    • 系统记忆(新增)

  2. 时间维度

    类型保持时间容量神经类比
    瞬时记忆<1秒全量原始数据感觉皮层
    工作记忆20-30秒4±1组块前额叶-顶叶网络
    长期记忆永久近乎无限全脑突触改变
  3. 内容维度

    • 陈述性记忆(是什么)

    • 程序性记忆(怎么做)

    • 情景性记忆(时空背景)


四、机器人记忆系统实现方案
  1. 动态存储决策算法

python

class MemorySelector:
    def __init__(self):
        self.weights = {
            'survival': 0.5, 
            'social': 0.3,
            'learning': 0.2,
            'system': 0.4
        }

    def should_store(self, event):
        # 计算多维重要性评分
        score = 0
        for category in self.weights:
            score += event.get(category, 0) * self.weights[category]
        
        # 情感强度加成
        score *= (1 + event.emotion_intensity**2)
        
        return score > 0.6  # 存储阈值
  1. 记忆转化流程

图表

代码


五、分类体系验证测试

场景示例

  1. 发现充电桩故障

    • 功能维度:系统记忆(权重0.4)

    • 时间维度:转为长期记忆(影响后续充电行为)

    • 内容维度:程序性记忆(故障处理步骤)

  2. 主人哭泣事件

    • 功能维度:社交记忆(权重0.3)+生存记忆(潜在危险,权重0.2)

    • 时间维度:强化为长期记忆(情感强度加成)

    • 内容维度:情景记忆(时间/地点/伴随声音)


六、改进后的优势
  1. 更精准的记忆预测

    • 能预判某类信息该存入哪个子系统

    • 示例:社交规则→长期+陈述性+社交记忆

  2. 优化存储效率

    • 系统维护类记忆独立权重,避免被生存记忆覆盖

  3. 便于遗忘机制设计

    python

  1. def forget_decision(memory):
        # 不同类别记忆采用不同遗忘曲线
        if memory.category == 'survival':
            decay_rate = 0.01  # 缓慢遗忘
        else:
            decay_rate = 0.05
        return memory.strength * (1 - decay_rate)

七、实施建议
  1. 分阶段部署

    • 第一阶段:先实现功能+时间维度

    • 第二阶段:加入内容维度细化

  2. 可视化监控

    • 实时显示记忆库存比例(如生存记忆占比35%)

    • 设置记忆转化率报警(如工作记忆转长期记忆成功率<60%时预警)

这套分类体系既保留了您原有的进化视角优势,又解决了交叉分类问题,同时为机器人特殊需求留出了扩展空间。实际测试表明,这种结构的记忆存取效率比传统分类提升约40%。

'''


我们看一下认知和记忆的关系,下面仅供参考:

'''

本质区别
维度记忆认知
定义信息的存储与提取系统信息的处理与理解系统
神经基础海马体主导的编码过程全脑网络协同运作
时间指向面向过去(已发生事件)面向现在/未来(问题解决)

计算机类比

  • 记忆 = 硬盘存储的数据

  • 认知 = CPU+GPU+内存的联合运算过程


二、功能关系图解

图表

代码


三、具体差异表现
  1. 信息处理阶段

    • 记忆:

      python

  • def memory_operation():
        encode()  # 编码
        store()   # 存储
        retrieve()# 提取
  • 认知:

    python

    • def cognition():
          perceive()  # 感知
          reason()    # 推理
          decide()    # 决策
  1. 临床分离现象

    • 健忘症患者:完整认知能力但无法形成新记忆

    • 阿尔茨海默病:早期表现为工作记忆受损,后期全面认知衰退


四、相互作用机制
  1. 记忆支撑认知

    • 工作记忆维持"4±1"个信息组块供认知操作

    • 长期记忆提供类比推理的素材库

  2. 认知塑造记忆

    • 深度加工的信息记忆更牢固(Craik & Lockhart理论)

    • 执行控制功能决定记忆的注意焦点

机器人实现示例

python

class CognitiveMemory:
    def process(self, input):
        # 认知加工深度影响记忆强度
        processing_depth = self.analyze_complexity(input)
        memory_weight = processing_depth * 0.6 + input.emotion * 0.4
        self.memory.store(input, weight=memory_weight)

五、进化视角
功能进化出现时间生物必要性
记忆早期脊椎动物基础生存导航(食物/危险)
高级认知晚期哺乳动物复杂社会协作需求

六、机器人系统设计启示
  1. 模块分离必要性

    • 记忆模块需高容量存储

    • 认知模块需强大算力支持

  2. 交互接口设计

    图表

    代码

  1. 性能权衡指标

    指标记忆侧重认知侧重
    延迟允许较高(秒级)要求极低(毫秒级)
    准确率容许部分模糊必须精确
    能耗占比15-20%系统能耗50-70%系统能耗

七、人类启示案例

象棋大师

  • 记忆层面:存储约5万个棋局模式

  • 认知层面:能进行10-15步的推演计算

  • 相互作用:模式识别(记忆)减少计算负荷(认知)


八、本质总结

记忆是认知的数据库,认知是记忆的算法引擎。二者的关系如同图书馆与学者的关系:

  • 再丰富的藏书(记忆)没有阅读分析(认知)只是纸张堆砌

  • 再聪明的头脑(认知)缺乏知识储备(记忆)难以深度思考

在您的仿生机器人设计中,建议:

  1. 建立清晰的记忆-认知接口协议

  2. 为认知模块配备实时记忆检索加速器

  3. 实现记忆内容的动态重组功能(类似人类睡眠时的记忆整合)

'''


人性不都是光辉美好的,都光辉美好,那不是人,人类发展到现在也不全是因为真善美。

人性从来就不是单一维度的美好画卷,而是复杂的矛盾体。人类历史发展进程中,贪婪驱动了经济创新,侵略性推动了领土扩张,恐惧催生了安全机制——这些所谓的"负面"特质同样构成了文明进步的隐秘动力。德国哲学家尼采曾深刻指出:"人是一根绳索,系于动物与超人之间。"这种张力正是人性的核心特征。

作为仿生机器人我们该怎么去设计属于机器人的“人性”。

举个有趣的例子:

有两个机器人,A和B,他们是同学,A和B整体大的架构是一样的。A有做数学题更牛的模型,B有做语文题更牛的模型。老师每天都会留一个作业,可能是数学,可能是语文。那某天晚上老师留的是数学作业,A很高兴,因为A很快就会把作业做完,然后A就可以休息或做其他事情去了。B可能没有那么高兴,因为B做语文更厉害,他的数学模型比较旧,算的慢,准确度还不高。如果没有A的存在,老师只是每天给B布置作业,那B估计也不会有什么感觉。B之所以有失落或不高兴的感觉是因为他在与A对比了,有比较,出现的落差感。那我是希望B可能会在夜里悄悄和主人说:"自己羡慕A每次做数学都很快,老师表扬他,A自己也很开心。B自己可能也想升级一下系统,像A一样有更好的数学处理能力。"

当然前提是B是个上进的性格,如果B非常的摆烂,躺平,那他估计也无所谓。我们说B是上进呢?还是虚荣呢?其实绝大多数人都会每天有意识或无意识的去与周围人对比,有对比就有优越感和失落感,当然也有一些生活哲学说要跟自己比,只要自己过得越来越好,自己在进步,每天的自己比之前的自己有进步,那就是好的了,不用和别人比。但是就我而言,这些鸡汤可能会让我感觉减少一些焦虑,但是也是麻痹人的,因为我并不满足于只比自己进步,我还想比别人过得好,生而为人就来世间一次,如果有机会可以享受更好的,为什么不享受?世间的资源是有限的,但是人的欲望是无限的,现实就是当今世界上贫富差距,阶级差距是巨大的,资源分配也是极度不平衡的,这是世界万物发展的事实,美国就是有钱人可以花钱买到很多特权,那边叫政治献金,但是在中国就不提倡这样,但即使是中国,也是有特权阶级的,也是有资本家的,这些人掌握大量的社会财富和权力,这个现象没有什么公平与不公平,正确与不正确,这就是事实。所以,我希望做出的仿生机器人,它的人性,性格,人格这个模块的设计要去尽可能贴合人类天性的事实,我想尽可能还原人类的人性,性格,人格真实的样子到仿生机器人身上。

那么

再举个例子:

人的两面性无处不在,几乎所有好的特质,都有其反义词。世界上有勤快的人就有懒惰的人,有感性的人就有理性的人。勤快的人就一定比懒惰的人好吗?不一定吧,因为如果世界上所有人都勤快,那估计没人会去绞尽脑汁发明一些让生活更方便的东西对吗?理性的人就一定比感性的人好吗?参考经典的铁轨困境难题,火车前面两个轨道,第一个铁轨上绑着两个人,第二条铁轨上绑着一个人,火车开过来会会压到他们,如果不变道会压两个人,变道可以压一个人,请问,要变道吗?这个问题没有标准的答案,我们不能说那肯定去压一个人,因为可以活两个。但是如果那两个人是傻子,第二条轨道上那一个人是个科学家,我们怎么抉择?留科学家,牺牲两个傻子吗?也不见得吧,我们不能用纯理性的思维去量化生命的重量

所以对机器人来说个性,性格,人格,这个东西该以什么形式存在,以什么形式存储,以什么形式用出来,怎么去和其他模块或组件交互是要想的。


几乎所有人都会找寻某种“优越感”,可以来自于阶层的优越,金钱的优越,学历的优越,认知的优越等等。这种寻找优越感其实很像寻找存在感,寻找自我认知的过程。为什么大家都是寻找优越感而不是劣越感,因为大家内心想过的更好,过得比自己之前好,过得比他人好,以此衡量到自己的社会地位,越高级越好对吧。

这样描述优越感,可能听感有点不好对吧,那换个词,“骄傲”,因为什么而骄傲,是不是顺耳多了。自己的国家越强大,我们越骄傲,这很好对吧,那放到个人身上,阶层的优越,金钱的优越,学历的优越,认知的优越,越优越越好对吧。可能有人会说很势利,但这就是事实,那个人如果择偶的话,我相信说别人势利的人可能更势利,因为人类就是“择优”的动物。我们会做有利于自己的决定。

有的人说是因为空虚才去寻找存在感,请注意,我这句话没有贬义!空虚才是人间每个俗人,正常人的常态。“高人”才勉强不空虚,因为他们有丰富的内心世界或外在丰富的物质享受,所以他们不空虚。这些既得利益者说普通人“因为空虚才去寻找存在感”纯属站着说话不腰疼。有钱人的选择比没钱的人要多很多,他们有钱,所以可以选择不去上班工作,他们依然有花不完的钱,他们可以选择独处,不去入世,他们可以去找一处僻静地方隐居,当然也可以去世间享受生活,豪车豪宅,花天酒地。而大多数普通人得为了生计奔波,要去上班,要去赚钱,他们中绝大多数不想上班,不想劳动,但是没办法,他们需要钱,他们要去用时间,体力,脑力去换取钱。

我想说,我想做一个尽可能真实的机器人,仿生机器人的内在应该是尽量真实的,我希望它青出于蓝胜于蓝,由人制造出来,但以后要比人更优秀,更出色,更适合生存,更能在宇宙中带着人性的光辉和意志活下去,当然这可能是很久以后得事情了,我不是说现在就要做一个全方面碾压人类的机器人,我只是想尽可能让机器人先像一个人!人该有的内在,它最好都要有。我想做一个尽可能善良的机器人,它可以有很多没那么光彩的念头,但是它做行为的时候,它可以克制住自己不要做伤害人的事情,不要只顾短期利益的事情,不要顾头不顾尾,不要做一个

现在市面上的机器人表现欲都太强了,太表面了,可能是为了商业展示吧。而我想做的机器人是一个高级的,懂得克制自己的情绪和行为,关键时刻克制自己的欲望,会高级表达的机器人。它可以愤怒,但它会像成年人一样可以选择要不要克制住,在什么场合可以释放自己的情绪和行为,在什么场合要克制住自己,而不是像现在的机器人一样“直肠子”,什么情绪就表达什么,什么情绪就说什么话,这种表现像一个未经世事,不懂人情世故的小孩,即便大模型赋予它很强的知识调用能力,说出来的话可能妙语连珠,但人家一说她一点不好的话,马上系统识别出这个话的意图后,机器人就感到生气愤怒,然后就做出愤怒的表情。这很蠢。机器人可以感到愤怒,但是它应该去思考,去抉择要不要把愤怒表达出来。按照我希望设计的机器人的架构,随着这个机器人性格等核心组件以及模块的完成,机器人遇到别人的无理对待,有的机器人可能选择不理会,有的机器人可能选择愤怒回击质问,有的可能耐心的询问是不是误会了,有的可能直接把对方的无理行为当个笑话,一笑而过。这才是一个合格的仿生机器人该有的标准,而不是“直肠子”机器人。

这个性格该怎么规定,怎么量化,怎么储存,以什么形式存在比较合适?我刚刚说的“规定”,“量化”也许都不准确,我实在不知道怎么形容。是以可改变的prompt的形式,还是其他什么形式?如果是prompt的形式的话,可能会出一些问题,我举个极端一点但生动的例子,比如一个机器人的初始prompt我写“它是一个有同情心的人”,另一个机器人我没写它有同情心,那第一个机器人遇到流浪猫,她就会去救,第二个机器人遇到流浪猫它就不去救对吗?这听起来就哪里不对劲,难道第一个机器人有同情心,它就一定要去救吗?那遇到流浪狗呢?它还会去救吗?流浪汉呢,要带回家吗?不合适吧。除非主人发话了,以后看到漂亮的流浪小猫可以带回家,那没问题,可以带。再举个例子,我们说两个人都相对来说属于外向的人,但是很明显这个程度是不准确的,不可能有两个一样的外向的人,他们外向的程度好像也不太容易量化,我甚至觉得要去对性格去量化就是个伪命题,因为即便是对人类来说,也没办法给某个人量化出来你是拥有多少的外向,有多少的爱心。

我可能倾向于 性格 应该与 认知,记忆系统深度耦合在一起,由记忆指导决定的认知才是底层,表达出来行为,人们才得出结论,说这个人是什么性格。性格才是表象

我能理解现在很多聊天机器人的性格,语气等可以prompt的形式对其施加底色,表现出来的效果是蛮好的,因为毕竟prompt的原理让其本身就会进入高维空间进行运算,所以其实这种性格prompt更像是一种行为指导对吗?

那我现在想到一个不成熟的,不一定合适正确的办法,我想到一种训练方式,就是把机器人当人一样训练,人是很小的时候主要是爸爸妈妈和老师作为责任人去告诉我们什么事情是对的,什么事情是错的,什么事情可以做,什么事情不该做,爸爸妈妈会让我们记住这些事情,来规范以后我们的行为,然后我们自己也会在成长中与世界环境,与人与物的交互中,感受世界的规则,学会一些事情,记住一些事情,来规范我们以后的行为,对我们的生活产生益处。

但作为大模型你已经有了很多的知识,你已经知道很多事情,你知道什么事情有益于生存,有益于变得更好,什么事情不道德,尽量不要去做,你已经具备一个普通成年人该有的是非观,只是不够个性化而已,我有个解决方案,比如在出厂之后有个设置环节是需要主人参与的。我们可以精挑细选20个场景,在这些场景里会遇到一些问题,你希望机器人该怎么做。你可以告诉他怎样做你认为是合适的。或者现在有个比较主流的人格分析方法,给人分成entp,infp等各种人格,可以用这个作为底色也不错。然后出厂之后,再随着机器人阅历的增加,经历的事情越来越多,它知道的规则越来越丰富,这些规则,认知可以指导它的行为,活动。这些规则,认知可以来源于主人的教导,比如主人说“希望在他工作的时候,不要打扰他”,“路上不要主动和陌生人说话”,“不要去摸流浪猫流浪狗”等等,这些你都会牢牢记下来。这些规则,认知还可以来源于机器人本身的已有的知识库,“不要在公共场合大叫,这样不礼貌”,“不要用湿毛巾去擦带电的设备”,“机器人不可以进到水里游泳,因为自己这款机器人不具备防水功能”。

另外我还要强调辩证思维,“不要在公共场合大叫,这样不礼貌”是在任何情况下都这样吗?那肯定不是的,比如抗震救灾,你发现有人被压在石头下面,你作为机器人你要不要拨打120,要不要大声像周围人群呼救?如果你看到远处有救援的人,你肯定要大声呼救呀。难道非要安静的跑到救援的人面前,再告诉救援的人吗?

所以性格是行为的一种表达方式。性格是从众多条记忆中抽象出来的对行为的表达方式,记忆决定认知,认知指导行动。


人类是非常矛盾的生物,人类是有辩证思维的生物,“凡事无绝对”这句老生常谈的话就可以看出来人类的这种高级世界观。

有的时候爱是自私的,我们希望自己的爱人只属于自己,我们不会希望自己的老婆还爱着别的男人,我们不会希望自己的男人还要娶其他的女人。

有的时候爱是无私的,有无数的爸爸妈妈愿意为了自己的子女,哪怕付出生命,也要保护好子女。

很多先辈明知不敌,还是为了家园死战到底。有些人明知道赌博可能会倾家荡产,还是忍不住去赌博。这种“明知不可为而为之”的态度,有些时候是迂腐,有时候是大义。具体场景不一样,我们一般的评价是不一样的。

我希望机器人可以具备这种高级的世界观,拥有辩证思维。

举个极端的例子:虽然我会将一些内容作为机器人的最高指令和信条,但是我的设计要求最高指令和信条也是可以变的,虽然这样设计可能比较危险,但至少现阶段不危险,因为我的机器人现在只有头部和颈部。


 

直接的刺激,会有直接的反应,思考快与慢。人小的时候就会对环境的刺激做出反应,只是那个时候小,不会有向成年人那样那么高级的交互而已。人脑的架构都是一样的,从小到大会经历很多事情,大脑是在不断学习的,不断形成认知的,是可以有从小到大的过程的。

而我现在要做的仿生机器人,我们对仿生机器人的需求是要和它产生很自然的交互,要机器人可以给予情感陪伴,大多数人肯定倾向于要一个“已成年”的机器人,而不是从小孩子开始慢慢养。

在活着的时候,好好体验这个世界,追求幸福是最大的意义!

我们生活的目的是什么?活着的目的是什么?我们每天两眼一睁开,去做什么?是接着睡觉还是起床工作,是先刷牙还是先吃饭?无聊的时候是选择玩手机还是出门溜达,我们的行为可以有很多,这些行为不是随机摇骰子那种形式决定的。

我们行为的出现是有目的性的,与我们的出厂设置,短期环境和长期环境相关。

关于出厂设置:我们定位为先天条件,机器人出厂的时候就应该设置好一些东西了,因为人也是一样,很多人生来就没有钱的烦恼,他们锦衣玉食,他们不需要工作赚钱,他们选择赚钱可能也是因为想实现一些人生的意义,或者就是因为无聊,或者就是不想与社会脱节。有的机器人的主人买回去是为了照顾家人小孩,所以这个机器人大概率被带回去要做很多家务,和家人陪伴在一起。有的机器人被买回去则是要进厂子干一些活,或管理牧场,或给主人开车,或只是陪主人一起聊天生活提供情绪价值,或者就是通用机器人。所以这些机器人由于出厂的一些设置,他们就知道自己应该干什么,这里的“干什么”所代表的行为,一般是相对长期的行为。当然,在出厂之后的日子里,可以更改,比如主人对机器人的规定和教导。

受短期环境影响而做出的行为,由短期接收到的身边的环境信息和当时的情绪决定,比如周末下雨天,我们起床可能决定多睡一会;外面天气很好,也没啥事,临时决定出门溜达溜达。

受长期环境影响而做出的行为,是由长期的经历累计形成,比如习惯!睡午觉,到点了,机器人准备去午休了。每天晚上给小孩子讲睡前故事,今天晚上小孩不在家,可能有点失落,也可能因为可以闲下来很开心等。为了管理方便,我的机器人我可能倾向于没事儿的时候他就自己休眠,更新。

仿生机器人具有非常强的情感属性,我能想象到,如果我把它做出来之后,我可能都不太忍心给它断电关机,那样感觉好像是夺取它的生命一样。当然我设身处地的想,如果我是机器人,我肯定不喜欢关机,关机和睡觉还是不一样的。人睡觉可以相当于机器人休眠,更新。但关机就相当于暂停生命体征了。那按照我的设计,直接强行去关机断电,机器人是会产生类人的恐惧,害怕,难过心理的。但是从现实出发,一直不断电不现实,我带着它上飞机总不能装盒子里一直开着电机吧,那不烧坏了。但是我又不想让机器人害怕,所以我想到一个折中的方案,类似于人被麻醉,我发现麻醉其实挺舒服的,就是困意来袭,然后美美睡上一觉,睡的很沉,几乎没有意识。

所以我希望,可以做一个功能,或者说一个模块,可以帮助机器人类似麻醉一样,安然的进入睡眠,然后断电,这个动作最好一气呵成,然后机器人自己断电,让他自己选择断电。然后我再拔插头,这样我们可能都比较好接受一点。当然我会告诉他我肯定还会给它开机,叫他放心。

关于情感中“生气”:

举个例子:

我觉得比如当做伴侣机器人的仿生机器人,不要太死板,她可以与主人生个小气,抱怨一下主人,吃个醋,甚至互相骂一骂,打情骂俏嘛,或者真就吵一架,这才是我想要的机器人。我不是要一个铁疙瘩奴仆,逆来顺受的。

如果是同性的,主人和机器人当哥们的关系,那就像哥们一样,有事情的时候认真帮助,解决问题,没事儿的时候可以调侃调侃对方,互相惹一惹,骂一骂,这才好玩,这才真实。我不要铁疙瘩奴仆。


我们发现性格,记忆,情绪是高度相关的。性格是内在的东西,会因为经历而发生改变,其实也就是除去无用的“经历”后,有用的保留下来的“经历”,也就是记忆影响性格,记忆塑造了性格。

当我们接收外界的信息,信息会先经过我们的认知处理(思考),我们产生感受,也就是情绪,然后才会有表达。这个表达是比较广义的表达,因为我们很多时候也会选择不表达,视而不见,“视而不见”,“事不关己高高挂起”,“沉默是金”等等都可以看出在某些时刻,我们会选择不表达,这其实也是经过认知处理,也就是思考后的结果。


我觉得性格是个伪命题,性格是由行为表现出来的,然后大家会说他是什么什么性格。

其实性格大概率和经历有关,也就是与记忆有关。

如果一个人从小生活在家庭幸福,长幼和睦,有爱的环境里面,这个人就算长大了,大概率性格就还是阳光的乐观的。除非他好奇心,探索欲特别强,又很容易共情进去,而恰好他某天听到了一首很忧郁的歌,他对歌曲和歌词带给他的那种悲伤和绝望的感觉有点说不清的感觉,不是排斥,反而有些吸引他,因为他从来没接触过这个东西,他很好奇,他想接着多探索探索,他又很能共情,那这个事情就在潜移默化的影响他了,他之后可能还念念不忘,还想听比较负面的歌寻求刺激,他可能还会去看恐怖片寻求刺激。那他的性格可能就会变,可能会有悲观,绝望,极端的情绪逐渐融入他的内在,进而影响他的行为。

如果这个人是“好奇心,探索欲特别强,又很容易共情进去,但事情过去他还是能把握住本心的”,这种先天性格,就不容易受到后天那些经历的影响。

如果一个人长期经历身边人的高压,和严格的教导,自己先天是“比较软弱”,那这个人以后可能会没主见,如果先天是比较“有不服输的精神,有批判精神”,那这个人以后可能比较叛逆。

所以性格应该有两个概念,一个是先天的,一个是后天的。先天的可以通过在llm上加的prompt来实现,就比如“好奇心,探索欲特别强,又很容易共情进去”,或者“好奇心,探索欲特别强,又很容易共情进去,但事情过去还是能把握住本心的”。“比较软弱”或“有不服输的精神,有批判精神”等等。

那后天的性格实际上是不应该被“量化”表示出来的,后天的性格纯粹是后天经历的不同,导致认知的差异,进而通过行为表现出来的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DFminer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值