一文搞懂RAG技术范式演变及Agentic RAG:未来AI应用的基石

〔更多精彩AI内容,尽在 「魔方AI空间」 ,引领AIGC科技时代〕

本文作者:猫先生

写在前面:

你有没有遇到过AI回答问题时给出过时或者不准确的内容?那是因为传统的AI系统依赖静态数据,没办法实时更新信息。

但现在,有了Agentic RAG,它就像给AI装上了“智能小助手”,能够实时检索最新数据,还能根据复杂任务灵活调整策略,让回答更准确、更贴近我们的需求!

推荐阅读 

► AGI新时代的探索之旅:2025 AIGCmagic社区全新启航

► 技术专栏: 多模态大模型最新技术解读专栏 | AI视频最新技术解读专栏 | 大模型基础入门系列专栏 | 视频内容理解技术专栏 | 从零走向AGI系列

► 技术资讯: 魔方AI新视界

► 技术综述: 一文掌握视频扩散模型 | YOLO系列的十年全面综述 | 人体视频生成技术:挑战、方法和见解 | 一文读懂多模态大模型(MLLM)

一、引 言

大语言模型(LLMs)在自然语言处理和文本生成方面取得了显著进展,但其依赖于静态训练数据的局限性限制了其在动态、实时查询中的表现。检索增强生成(RAG)系统通过结合外部数据检索机制来提高响应的相关性和时效性,但仍存在静态工作流和缺乏适应性等问题。

通过引入自主AI代理,解决传统RAG系统的局限性,提升系统的动态适应性和多步推理能力。

传统的RAG系统通过结合外部检索机制来增强LLMs的响应能力;现代AI系统中,代理能够感知、推理和自主执行任务,利用代理模式如反思、规划、工具使用和多方协作来增强决策和适应性。

文章详细探讨了Agentic RAG基础原理、架构分类、应用场景以及实现策略

二、RAG概述及其演变

检索增强生成(RAG)代表了人工智能领域的一项重大进展,它将大语言模型(LLMs)的生成能力与实时数据检索相结合。虽然大语言模型在自然语言处理方面展现了显著的能力,但它们对静态预训练数据的依赖往往导致响应过时或不完整。

RAG通过从外部动态检索相关信息并将其纳入生成过程来克服这一限制,从而实现上下文准确且最新的输出。

图1:Agentic RAG概览

2.1 RAG的核心组件

RAG系统的架构集成了三个主要组件,如图2:

● 检索:负责查询外部数据源,如知识库、API或向量数据库。高级检索器利用密集向量搜索和基于变压器的模型来提高检索精度和语义相关性。

● 增强:处理检索到的数据,提取并总结与查询上下文最相关的信息。

● 生成:将检索到的信息与LLM预训练的知识结合起来,生成连贯、上下文恰当的响应。

图2:RAG的核心组件

2.2 RAG范式的演变

检索增强生成(RAG)领域已显著发展,以应对现实世界应用日益增长的复杂性,其中上下文准确性、可扩展性和多步推理至关重要。起初简单的基于关键词的检索已转变为复杂的、模块化的、自适应的系统,能够整合多样的数据源和自主决策过程。

这一演变突显了RAG系统高效且有效地处理复杂查询的日益增长的需求。

本部分介绍RAG范式关键的发展阶段:从最初的 Naïve RAGAdvanced RAGModular RAGGraph RAG,最终演变为 Agentic RAG,以及它们的定义特征、优势和局限性。通过理解这些范式的演变,读者可以欣赏到检索和生成能力的进步及其在各个领域的应用。

图3:RAG研究技术树。涉及RAG的阶段主要包括预训练、微调和推理。随着LLMs的出现,对RAG的研究最初侧重于利用LLMs强大的上下文学习能力,主要集中在推理阶段。随后的研究更加深入,逐渐与LLMs的微调相结合。研究人员也一直在探索通过检索增强技术在预训练阶段增强语言模型的方法。

2.2.1 Naïve RAG

Naïve RAG代表检索增强生成的基础实现。图4展示了Naïve RAG的简单检索-阅读工作流程,侧重于基于关键词的检索和静态数据集。这些系统依赖于简单的基于关键词的检索技术,如TF-IDF和BM25,从静态数据集中获取文档。然后使用检索到的文档来增强语言模型的生成能力。

图4:Naïve RAG概览

Naïve RAG以其简单性和易于实现的特点而著称,适用于涉及基于事实的查询且上下文复杂性最小的任务。

然而,它存在几个局限性:

缺乏上下文感知:检索到的文档往往未能捕捉到查询的语义细微差别,因为依赖的是词汇匹配而非语义理解。

输出分散:缺乏高级预处理或上下文整合通常导致回答不连贯或过于泛泛。

可扩展性问题:基于关键词的检索技术在大型数据集中表现不佳,常常无法识别最相关的信息。

尽管存在这些限制,Naïve RAG系统为检索与生成的集成提供了一个关键的概念验证,为更复杂的范式奠定了基础。

2.2.2 Advanced RAG高级RAG)

高级RAG系统在Naïve RAG的局限基础上,通过融入语义理解和增强的检索技术而构建。图5突出显示了检索中的语义增强以及高级RAG的迭代式、上下文感知的流程。这些系统利用密集检索模型(如密集段落检索DPR)和神经排序算法来提高检索精度。

图5:高级RAG概览

高级RAG的关键特性包括:

密集向量搜索:查询和文档以高维向量空间表示,使用户查询与检索到的文档之间实现更好的语义对齐。

上下文感知的重新排序:神经模型对检索到的文档进行重新排序,优先处理最相关的上下文信息。

迭代检索:高级RAG引入多跳检索机制,使得复杂查询能够在多篇文档间进行推理。

这些进步使高级RAG适用于需要高精度和细致理解的应用场景,如研究综述和个人化推荐。然而,在处理大型数据集或多步骤查询时,计算开销和可扩展性限制等挑战依然存在。

2.2.3 Modular RAG(模块式RAG)

模块式RAG代表了RAG范式的最新演变,强调灵活性和定制化。这些系统将检索和生成流程分解为独立、可重用的组件,以实现特定领域的优化和任务适应性。图6展示了模块化架构,展示了混合检索策略、可组合的流程以及外部工具的集成。

图6:模块化RAG概览

模块式RAG的主要创新包括:

混合检索策略:结合稀疏检索方法(例如,稀疏编码器-BM25)与密集检索技术(例如,DPR - 密集段落检索),以最大化各种查询类型的准确性。

工具集成:结合外部API、数据库或计算工具来处理专门任务,如实时数据分析或特定领域的计算。

可组合的管道:模块化RAG使得检索器、生成器和其他组件能够独立替换、增强或重新配置,从而高度适应特定用例。

例如,一个为财务分析设计的模块化RAG系统可能通过API获取实时股票价格,使用密集检索分析历史趋势,并通过定制的语言模型生成可操作的投资洞察。这种模块化和定制化使模块化RAG非常适合复杂的多领域任务,提供可扩展性和精确性。

2.2.4 Graph RAG

Graph RAG通过集成图基数据结构,如图7所示,扩展了传统的检索增强生成系统。这些系统利用图数据内的关系和层次来增强多跳推理和上下文丰富。通过结合基于图的检索,Graph RAG能够提供更丰富、更准确的生成输出,特别是对于那些需要关系理解的任务。

图7:Graph RAG概览

Graph RAG的特点在于其能力:

节点连接性:捕捉并推理实体间的关系。

● 分层知识管理:通过基于图的层次结构处理结构化和非结构化数据。

● 上下文丰富:通过利用基于图的路径增加关系理解。

然而,Graph RAG存在一些限制:

● 可扩展性有限:对图结构的依赖可能会限制可扩展性,尤其是在数据源广泛的情况下。

数据依赖性:高质量图数据对于有意义的输出至关重要,这限制了其在非结构化或注释不良的数据集中的适用性。

集成复杂性:将图数据与非结构化检索系统集成会增加设计和实现的复杂性。

Graph RAG非常适合于需要结构化关系推理的应用,如医疗保健诊断、法律研究等领域。

2.2.5 Agentic RAG(代理式RAG):范式转变

Agentic RAG通过引入能够进行动态决策和工作流优化的自主智能体,实现了范式转变。与静态系统不同,代理式RAG采用迭代细化和自适应检索策略来处理复杂、实时和多领域的查询。该范式在引入基于智能体的自主性的同时,利用检索和生成过程的模块化。

代理RAG的关键特性包括:

● 自主决策:代理根据查询复杂度独立评估和管理检索策略。

● 迭代精炼:包含反馈循环以提高检索准确性和响应相关性。

● 工作流优化:动态编排任务,使实时应用效率更高。

尽管有所进步,代理RAG仍面临一些挑战:

● 协调复杂性:管理代理间的互动需要复杂的编排机制

● 计算开销:使用多个代理增加了复杂工作流的资源需求

● 可扩展性限制:虽然可扩展,系统的动态特性在高查询量时可能使计算资源紧张

代理RAG在客户支持、金融分析和自适应学习平台等领域表现出色,在这些领域中动态适应性和上下文精确性至关重要。

传统的RAG系统,凭借其静态的工作流程和有限的适应性,常常难以处理动态的多步骤推理和复杂的现实世界任务。

这些限制推动了代理智能的整合,从而产生了代理式检索增强生成(RAG)。通过融入能够进行动态决策、迭代推理和自适应检索策略的自主代理,代理式RAG在继承早期范式的模块化的同时,克服了它们的固有限制。

这一进化使得更复杂的多领域任务能够以更高的精度和对上下文的理解得到解决,将代理式RAG定位为下一代AI应用的基石。特别是,代理式RAG系统通过优化工作流程和迭代精炼输出来减少延迟,解决了历史上阻碍传统RAG可扩展性和有效性的挑战。

2.3 代理式RAG的工具和框架

代理式检索增强生成(RAG)系统代表了在结合检索、生成和代理智能方面的重要演变。这些系统通过整合决策制定、查询重构和适应性工作流程,扩展了传统RAG的功能。以下工具和框架为开发代理式RAG系统提供了强大的支持,解决了现实世界应用的复杂需求。

名称

功能

优势

LangChain 和 LangGraph

- 提供模块化组件用于构建RAG管道

- 支持检索器、生成器和外部工具的无缝集成

- 引入基于图的工作流,支持循环、状态持久化和人机交互

- 支持复杂的编排和自我纠正机制

- 提供灵活的图数据工作流

LlamaIndex

- 实现端到端的文档处理自动化

- 引入元代理架构,子代理管理较小的文档集

- 通过顶层代理协调任务,如合规分析和上下文理解

- 支持大规模部署

- 提供高效的文档处理和推理能力

Hugging Face Transformers 和 Qdrant

- 提供预训练模型用于嵌入和生成任务

- 增强检索工作流,提供自适应向量搜索能力

- 支持动态切换稀疏和密集向量方法

- 提高检索性能

CrewAI 和 AutoGen

- 支持多代理架构

- 强调层次和顺序过程、健壮的记忆系统和工具集成

- 支持代码生成、工具执行和决策制定

- 支持复杂的协作和任务自动化

- 提供强大的多代理协作能力

OpenAI Swarm Framework

- 设计用于轻量级多代理编排的教育框架

- 强调代理自主性和结构化协作

- 简化多代理系统的开发和维护

- 提供高效的协作机制

Agentic RAG with Vertex AI

- 由Google开发,与Agentic RAG无缝集成

- 提供构建、部署和扩展机器学习模型的平台

- 利用先进的AI能力进行上下文感知的检索和决策

- 提供强大的云服务支持

Semantic Kernel

- 微软的开源SDK,将大型语言模型(LLMs)集成到应用程序中

- 支持代理模式,创建自主AI代理

- 支持自然语言理解和任务自动化

- 提供实时协作和信息检索能力

Amazon Bedrock for Agentic RAG

- 提供实现Agentic RAG工作流的强大平台

- 支持灵活的RAG工作流

- 提供高效的资源管理和优化

IBM Watson 和 Agentic RAG

- 使用Granite-3-8B-Instruct模型回答复杂查询

- 集成外部信息和增强响应准确性

- 提供强大的推理和决策支持

- 支持广泛的行业应用

Neo4j 和向量数据库

- Neo4j处理复杂关系和语义查询

- 向量数据库(如Weaviate、Pinecone、Milvus和Qdrant)提供高效的相似性搜索和检索能力

- 支持高性能的RAG工作流

- 提供强大的图形数据处理能力

三、Agentic Intelligence的核心原则与背景

代理智能(Agentic Intelligence)构成了代理式RAG系统的基础,使其能够超越传统RAG的静态和反应性质。

通过整合能够进行动态决策、迭代推理和协作工作流程的自主代理,代理式RAG系统展现出更强的适应性和精确度。本节将探讨支撑代理智能的核心原则。

图8 AI Agent概述

AI Agent 的组成部分如图 8 所示:

● LLM(具有定义的角色和任务):作为代理的主要推理引擎和对话界面。它解释用户查询,生成响应,并保持连贯性。

● 记忆(短期和长期):在互动中捕捉上下文和相关数据。短期记忆追踪即时对话状态,而长期记忆存储累积的知识和代理经验。

● 规划(反思与自我批判):通过反思、查询路由或自我批判,引导代理的迭代推理过程,确保复杂任务得到有效分解。

● 工具:向量搜索、网络搜索、应用程序接口(API)等:扩展代理的能力,使其超越文本生成,能够访问外部资源、实时数据或专业计算。

代理模式提供了结构化的方法,指导代理在代理检索增强生成(RAG)系统中的行为。这些模式使代理能够动态适应、规划和协作,确保系统能够精确且可扩展地处理复杂、现实世界的任务。

四个关键模式支持代理工作流程:

3.1 反思

反思是代理工作流程中的一个基础设计模式,使代理能够迭代评估和精炼其输出。通过整合自我反馈机制,代理可以识别并解决错误、不一致性和改进领域,从而提升代码生成、文本制作和问答等任务的性能(如图9所示)。

图9:代理自我反思概述

在实际使用中,反思涉及提示代理对其输出的正确性、风格和效率进行批判,然后将此反馈纳入后续迭代。外部工具,如单元测试或网络搜索,可以通过验证结果和突出显示差距来进一步增强这一过程。

在多代理系统中,反思可能涉及不同的角色,例如一个代理生成输出,而另一个则对其进行批判,促进协作改进。例如,在法律研究中,代理可以通过重新评估检索到的判例法来迭代精炼回应,确保准确性和全面性。在自我精炼、反思和批评家等研究中,反思已显示出显著的性能提升。

3.2 规划

规划是一种在代理工作流程中的关键设计模式,它使代理能够自主地将复杂任务分解成更小、更易于管理的子任务。如图10a所示,这种能力对于动态和不确定场景中的多跳推理和迭代问题解决至关重要。

通过利用规划,代理可以动态地确定完成更大目标所需的步骤顺序。这种适应性使代理能够处理无法预先定义的任务,确保决策的灵活性。虽然规划功能强大,但与如反思这样的确定性工作流程相比,它可能产生不那么可预测的结果。

规划特别适用于需要动态适应的任务,预先定义的工作流程不足以满足需求。随着技术的成熟,其在各个领域推动创新应用的潜力将继续增长。

图10:代理规划和工具使用概述

3.3 工具使用

工具使用使代理能够通过与外部工具、API或计算资源交互来扩展其能力,如图10b所示。这种模式允许代理收集信息、执行计算和操作超出预训练知识的数据。通过将工具动态集成到工作流程中,代理可以适应复杂任务,并提供更准确且与上下文相关的输出。

现代代理工作流程结合使用工具用于各种应用,包括信息检索、计算推理以及与外部系统接口。随着GPT-4等功能调用能力的提升以及能够管理众多工具访问的系统的发展,这种模式的实施已经发生了显著变化。这些进展促进了复杂的工作流程,在这些流程中,代理能够自主选择和执行为特定任务最相关的工具。

尽管工具的使用显著增强了代理式工作流程,但在优化工具选择方面仍然存在挑战,特别是在有大量可用选项的情况下。受检索增强生成(RAG)启发的技术,如基于启发式的选择,已被提出来解决这一问题。

3.4 多代理

多代理协作是代理工作流中的一种关键设计模式,它实现了任务专门化和并行处理。代理沟通并共享中间结果,确保整体工作流程保持高效和连贯。

通过在专门的代理之间分配子任务,这种模式提高了复杂工作流的可扩展性和适应性。多代理系统允许开发人员将复杂的任务分解为分配给不同代理的更小、可管理的子任务。这种方法不仅提高了任务性能,还为管理复杂的交互提供了一个强大的框架。

每个代理都有自己的内存和工作流,其中可以包括使用工具、反射或规划,从而实现动态和协作的问题解决(见图11)。虽然多代理协作具有巨大的潜力,但与反思和工具使用等更成熟的工作流程相比,它是一种不太可预测的设计模式。然而,AutoGen、Crew AI和LangGraph等新兴框架为实施有效的多代理解决方案提供了新的途径。

图11:MultiAgent概述

以上这些设计模式是代理式RAG系统成功的基石。通过构建工作流程——从简单的顺序步骤到更具适应性的协作过程——这些模式使系统能够动态地调整其检索和生成策略,以适应现实世界环境中多样且不断变化的需求。利用这些模式,代理能够处理迭代式的、具有上下文感知能力的任务,这些任务的能力远远超过传统RAG系统的能力。

四、代理式工作流模式:动态协作的自适应策略

代理工作流模式构建基于LLM的应用程序,以优化性能、准确性和效率。

4.1 提示链:通过顺序处理提高准确性

提示链将复杂任务分解为多个步骤,每个步骤都建立在前一个步骤的基础上。这种结构化方法通过简化每个子任务来提高准确性,然后再继续前进。然而,由于顺序处理,它可能会增加延迟。

使用时机:当任务可以分解成固定子任务,每个子任务都对最终输出有贡献时,此工作流程最为有效。在逐步推理能提高准确性的场景中,它特别有用。

示例应用:

● 在一种语言中生成营销内容,然后将其翻译成另一种语言,同时保留细微差别。

● 通过首先生成大纲、验证其完整性,然后编写全文来构建结构化文档。

4.2 路由:将输入引导至专门流程

路由涉及对输入进行分类并将其引导至适当的专门提示或流程。这种方法确保不同的查询或任务分别处理,从而提高效率和响应质量。

图13:图解路由工作流

适用场景:适用于需要不同处理策略的各种输入类型,以确保每个类别的性能优化。

示例应用:

● 将客户服务查询引导至不同的类别,如技术支持、退款请求或一般咨询。

● 为成本效率考虑,将简单查询分配给小型模型处理,而复杂请求则交给高级模型处理。

4.3 并行化:通过并发执行加速处理

并行化将任务划分为同时运行的独立进程,减少延迟并提高吞吐量。它可以分为分块(独立子任务)和投票(多个输出以提高准确性)。

何时使用:当任务可以独立执行以提高速度时,或者当多个输出提高信心时,此方法很有用。

示例应用:

● 分区:拆分任务,如内容审核,一个模型筛选输入,另一个生成响应。

● 投票:使用多个模型交叉检查代码漏洞或分析内容审核决策。

4.4 协调器-工作线程:动态任务委派

此工作流程包含一个中央协调器模型,该模型动态将任务拆分为子任务,分配给专门的工作线程模型,并编译结果。与并行化不同,它适应于不同的输入复杂性。

图15:协调器-工作线程工作流示意图

适用场景:最适合于需要动态分解和实时适应的任务,其中子任务未预先定义。

示例应用:

● 根据请求变更的性质,自动修改代码库中的多个文件。

● 通过收集和综合多个来源的相关信息来进行实时研究。

4.5 评估器-优化器:通过迭代完善输出

评估器-优化器的工作流通过生成初始输出来不断改进内容,并根据评估模型的反馈进行完善。

何时使用:当迭代细化显著增强响应质量时有效,尤其是在存在明确的评估标准时。

示例应用:

● 通过多次评估和细化周期改进文学翻译。

● 进行多轮研究查询,其中额外的迭代完善搜索结果。

五、代理增强检索系统的分类

5.1 单代理代理式RAG

单代理式RAG:作为一个集中式决策系统,由单个代理管理信息的检索、路由和整合(如图17所示)。这种架构通过将这些任务整合到一个统一的代理中,简化了系统,使其特别适用于工具或数据源数量有限的环境。

5.2 多代理代理式RAG系统

多代理RAG代表了单一代理架构的模块化、可扩展的演进,旨在通过利用多个专门代理来处理复杂的工作流程和多样的查询类型(如图18所示)。该系统不是依赖单一代理来管理所有任务——推理、检索和回应生成——而是将职责分布在多个代理上,每个代理针对特定角色或数据源进行了优化。

图18:多代理RAG系统概述

5.3 分层代理RAG系统

分层代理RAG系统采用结构化的多层次方法进行信息检索和处理,如图19所示,提高了效率和战略决策能力。代理按层级组织,较高层级的代理监督和指导较低层级的代理。这种结构实现了多层级决策,确保查询由最合适的资源处理。

图19:分层代理RAG示意图

5.4 代理纠正RAG

纠正RAG:引入机制以自我纠正检索结果,提升文档利用率并改善回应生成质量,如图20所示。通过将智能代理嵌入工作流程,纠正性RAG确保上下文文档和响应的迭代细化,最小化错误并最大化相关性。

纠正性RAG的核心理念在于其动态评估检索到的文档、执行纠正措施以及优化查询以提升生成响应的质量的能力。

图20:代理纠正RAG概述

5.5 自适应代理式RAG

自适应RAG通过基于传入查询的复杂度动态调整查询处理策略,提高 LLMs 的灵活性和效率。与静态检索流程不同,自适应RAG使用分类器来评估查询复杂度并确定最合适的方法,范围从单步检索到多步推理,甚至对于直接查询完全绕过检索,如图21所示。

5.6 基于图的代理RAG

Agent-G:用于图RAG的代理框架

Agent-G,一种新颖的代理架构,它将图知识库与非结构化文档检索相结合。通过结合结构化和非结构化数据源,该框架增强了检索增强生成(RAG)系统,提高了推理和检索准确性。它采用模块化检索器库、动态代理交互和反馈循环,以确保如图22所示的高质量输出。

图22:Agent-G概述:图RAG的代理框架

GeAR:用于检索增强生成的图形增强代理

GeAR,引入一个代理框架,通过结合基于图形的检索机制来增强传统的RAG系统。通过利用图扩展技术和基于代理的架构,GeAR解决了多跳检索场景中的挑战,如图23所示,提高了系统处理复杂查询的能力。

图23:GeAR概述:用于检索增强生成的图增强代理

5.7 在代理式RAG中的代理式文档工作流程

代理式文档工作流程(ADW)通过实现端到端知识工作自动化,扩展了传统的检索增强生成(RAG)范式。这些工作流程协调复杂的以文档为中心的过程,整合了文档解析、检索、推理以及结构化输出与智能代理

ADW系统通过保持状态、协调多步骤工作流程,并对文档应用特定领域逻辑,解决了智能文档处理(IDP)和RAG的局限性。

六、代理式RAG框架的比较分析

如下表提供了三种架构框架的全面比较分析:传统RAG、代理式RAG和代理式文档工作流程(ADW)

此分析突显了它们各自的优点、缺点和最适用的场景,为在不同用例中的适用性提供了宝贵的见解。

特征

传统 RAG

代理 RAG

代理文档工作流(ADW)

关注点

孤立的检索和生成任务

多代理协作和推理

文档为中心的端到端工作流

上下文维护

有限

通过内存模块实现

在多步工作流中保持状态

动态适应性

最小

针对文档工作流定制

工作流编排

缺失

协调多代理任务

集成多步文档处理

使用外部工具/API

基本集成(例如,检索工具)

通过工具如 API 和知识库扩展

深度集成业务规则和领域特定工具

可扩展性

限于小数据集或查询

适用于多代理系统

适用于多域企业工作流

复杂推理

基本(例如,简单问答)

与代理进行多步推理

在文档中进行结构化推理

主要应用

问答系统,知识检索

多域知识和推理

合同审查,发票处理,索赔分析

优势

简单,快速设置

高准确性,协同推理

端到端自动化,领域特定智能

挑战

上下文理解不足

协调复杂

资源开销,领域标准化

比较分析强调了从传统RAG到代理RAG,再到代理文档工作流(ADW)的演变轨迹。

虽然传统RAG为基本任务提供了简单易用的部署,但代理RAG通过多代理协作引入了增强的推理和可扩展性。

ADW以这些进步为基础,提供了强大的、以文档为中心的工作流,促进了端到端的自动化和与特定领域流程的集成。了解每个框架的优势和局限性对于选择最合适的架构以满足特定的应用程序要求和操作需求至关重要。

七、Agentic RAG的应用

代理式检索增强生成系统已在多个领域展现出变革潜力。通过结合实时数据检索、生成能力和自主决策,这些系统应对复杂、动态和多模态的挑战。

7.1 客户支持与虚拟助手

代理式RAG系统通过实现实时、上下文感知的查询解决,正在革新客户支持。传统的聊天机器人和虚拟助手通常依赖静态知识库,导致回答泛化或过时。

相比之下,代理式RAG系统动态检索最相关信息,适应用户上下文,并生成个性化回应。

用例:Twitch广告销售提升

例如,Twitch利用亚马逊Bedrock上的代理式工作流程和RAG来简化广告销售。系统动态检索广告商数据、历史活动表现和受众人口统计数据,以生成详细的广告提案,显著提高了运营效率。

关键优势:

• 提升回应质量:个性化且具有上下文意识的回复增强了用户参与度。

• 运营效率:通过自动化复杂查询,减轻了人工支持代理的工作负担。

• 实时适应性:动态整合不断发展的数据,如实时服务中断或价格更新。

7.2 医疗保健与个性化医疗

在医疗保健领域,将患者特定数据与最新的医学研究相结合,对于做出明智决策至关重要。

代理式RAG系统通过检索实时临床指南、医学文献和患者历史记录,协助临床医生进行诊断和治疗规划。

用例:患者病例摘要

代理式RAG系统已被应用于生成患者病例摘要。例如,通过整合电子健康记录(EHR)和最新的医学文献,系统生成全面的摘要,供临床医生做出更快且更有根据的决策。

主要优势:

• 个性化护理:根据患者个人需求定制建议。

• 时间效率:简化了相关研究的检索过程,为医疗保健提供者节省宝贵时间。

• 准确性:确保建议基于最新证据和患者特定参数。

7.3 法律与合同分析

代理式RAG系统正在重新定义法律工作流程的执行方式,提供快速文档分析和决策工具。

用例:合同审查

一个法律代理式RAG系统可以分析合同、提取关键条款并识别潜在风险。通过结合语义搜索能力和法律知识图谱,它自动化了合同审查的繁琐过程,确保合规并降低风险。

主要优势:

• 风险识别:自动标记偏离标准条款的条款。

• 高效:减少合同审查流程所花费的时间。

• 可扩展性:同时处理大量合同。

7.4 金融与风险分析

代理式RAG系统通过提供实时洞察来改变金融行业,用于投资决策、市场分析和风险管理。

这些系统整合了实时数据流、历史趋势和预测建模,以生成可操作的输出。

使用案例:汽车保险理赔处理

在汽车保险中,代理式RAG可以自动化理赔处理。例如,通过检索保单详情并结合事故数据,它在确保符合监管要求的同时生成理赔建议。

主要优势:

• 实时分析:基于实时市场数据提供洞察。

• 风险缓解:使用预测分析和多步骤推理识别潜在风险。

• 改进决策:结合历史和实时数据制定全面策略。

7.5 教育与个性化学习

在教育领域,代理式RAG系统正在取得重大进展。这些系统通过生成适合学习者进度和偏好的解释、学习材料和反馈,实现自适应学习。

使用案例:研究论文生成

在高等教育中,代理式RAG(主动式检索辅助生成)被用来通过综合多个来源的关键发现来协助研究人员。例如,当一位研究人员查询“量子计算的最新进展是什么?”时,他们会收到一个包含参考文献的简明摘要,从而提升他们工作的质量和效率。

关键优势:

• 个性化学习路径:根据每个学生的需求和表现水平调整内容。

• 引人入胜的互动:提供互动式解释和个性化反馈。

• 可扩展性:支持在大规模多样化的教育环境中部署。

7.6 在多模态工作流程中的图增强应用

图增强代理式RAG(GEAR)结合了图结构与检索机制,使其在需要互联数据源的多模态工作流程中特别有效。

使用案例:市场调查生成

GEAR能够综合文本、图片和视频数据用于市场营销活动。例如,查询“环保产品有哪些新兴趋势?”会生成一个包含客户偏好、竞争对手分析和多媒体内容的详细报告。

关键优势:

• 多模态能力:整合文本、图片和视频数据以提供全面输出。

• 增强创造力:为市场营销和娱乐行业生成创新想法和解决方案。

• 动态适应性:适应不断发展的市场趋势和客户需要。

推荐阅读 

► AGI新时代的探索之旅:2025 AIGCmagic社区全新启航

► 技术专栏: 多模态大模型最新技术解读专栏 | AI视频最新技术解读专栏 | 大模型基础入门系列专栏 | 视频内容理解技术专栏 | 从零走向AGI系列

► 技术资讯: 魔方AI新视界

► 技术综述: 一文掌握视频扩散模型 | YOLO系列的十年全面综述 | 人体视频生成技术:挑战、方法和见解 | 一文读懂多模态大模型(MLLM)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值