网络模型int8量化中使用的一些量化方法

本文介绍了在网络模型int8量化中使用的量化方法,包括Uniform Affine Quantizer、Uniform Symmetric Quantizer和Stochastic Quantizer。针对训练好的模型,讨论了只量化权重和权重与激活同时量化的策略,以及它们对性能的影响。实验表明,per-channel的权值和激活量化能有效减少精度损失,而量化粒度的选择对模型性能至关重要。
摘要由CSDN通过智能技术生成

1. 概述

前言:这篇博客中涉及到的是网络在做int8 infer时候涉及到的量化方法,这里并不涉及到int8训练的东西,这篇文章涉及到的量化方法主要来自于:Quantizing deep convolutional networks for efficient inference: A whitepaper

深度学习中网络的加速主要有如下的几种方式:

  • 1)设计高效且小的网络,如MobileNet系列、shuffleNet系列、VoVNet等;
  • 2)从大的模型开始通过量化、剪裁、蒸馏等压缩技术实现网络的小型化;
  • 3)在inference阶段使用特殊的计算库实现计算的加速,比如MKL、TensorRT等;

在上面的方法中最简单的方法就是降低模型运算过程中的bits数量,降低到16bits、8bits甚至2bits。这样做具有如下的优点:

  • 1)在众多的使用场合与模型中可以广泛使用,并不需要设计再设计特殊的网络结构,而且量化是从训练好的模型上进行的,并不需要重训练,且损失精度比较少。目前现有的大部分硬件计算资源都是支持这样的运算模式的,因而也不需要重新设计专门的硬件;
  • 2)模型量化可以显著减少模型的尺寸大小,理论上可以减少模型的尺寸4倍,并且模型的性能损失很小;
  • 3)使用更低bits数的模型可以减少在运算过程中的内存与缓存消耗;
  • 4)大多数的处理器对8bits的运算更快;
  • 5)8bits的计算拥有更好的实现效率,因而进行对应的计算所消耗的能量更少;

2. 量化的方法

2.1 Uniform Affine Quantizer

将范围在 ( x m i n , x m a x ) (x_{min},x_{max}) (xmin,xmax)之间的浮点数字映射到规定的范围 ( 0 , N l e v e l s − 1 ) ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值