《YOLOv3: An Incremental Improvement》论文笔记

本文详细介绍了YOLOv3在YOLOv2基础上的优化,包括边界框预测、分类预测、跨尺度预测和特征抽取网络的改进。YOLOv3在保持快速的同时提高了准确率,尤其是在小目标检测上的性能提升显著。通过多尺度预测和 DarkNet-53 结构,YOLOv3在速度和精度上优于其他检测网络。
摘要由CSDN通过智能技术生成

1. 论文工作

在这篇文章中又对之前的YOLO-v2进行了优化,优化之后的网络变大了,准确率也提升了。但是,升级之后得到的YOLO-v3也是一样的快。在分辨率 320 ∗ 320 320*320 320320的情况下运行只需要22ms且拥有28.2mAP,比同精度SSD快三倍。使用老的0.5AP检测度量,YOLO-v3运行只要51ms并且取得57.9 A P 50 AP_{50} AP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值