从「广义斯托克斯公式」结合「外微分公式」导出「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」

0、前言&引子

0.1、本文要求的预备知识

本文要求读者已修习书目《高等数学(下)》,了解「梯度」、「散度」、「旋度」的定义,了解全微分公式,熟悉「第一/二类曲线/面积分」,了解「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」。

本文旨在于让读者理解到「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」可以被统一为「广义斯托克斯公式」

0.2、牛顿-莱布尼茨公式

我们在高数中讲过牛顿-莱布尼茨公式
∫ a b f ′ ( x ) d x = f ( b ) − f ( a ) (0.1) \int_{a}^b{f^\prime\left( x \right) \mathrm{d}x}=f\left( b \right) -f\left( a \right) \tag{0.1} abf(x)dx=f(b)f(a)(0.1)
或者记为
∫ [ a , b ] d f = f ( b ) − f ( a ) (0.2) \int_{\left[ a,b \right]}{ \mathrm{d}f}=f\left( b \right) -f\left( a \right) \tag{0.2} [a,b]df=f(b)f(a)(0.2)

0.3、格林公式

在讲二重积分时,引入了格林公式
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ l P d x + Q d y (0.3) \iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) \mathrm{d}x\mathrm{d}y}=\oint_{l}{P\mathrm{d}x+Q\mathrm{d}y} \tag{0.3} D(xQyP)dxdy=lPdx+Qdy(0.3)
其中曲线 l l l 是平面区域 D D D边界曲线,我们用符号 l = ∂ D l=\partial D l=D 来表示 D D D 的边界曲线,并用行列式化简表达式
∬ D ∣ ∂ ∂ x ∂ ∂ y P Q ∣ d x d y = ∮ ∂ D P d x + Q d y (0.4) \iint_D{\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right|\mathrm{d}x\mathrm{d}y}=\oint_{\partial D}{P\mathrm{d}x+Q\mathrm{d}y} \tag{0.4} DxPyQdxdy=DPdx+Qdy(0.4)
表达式右端可以看作向量的内积 { P , Q } ⋅ { d x , d y } \left\{P,Q\right\}\cdot \left\{\mathrm{d}x,\mathrm{d}y\right\} {P,Q}{dx,dy} ,因此,令 F = { P , Q } , d l = { d x , d y } \boldsymbol{F}=\left\{ P,Q \right\} ,\mathrm{d}\boldsymbol{l}=\left\{ \mathrm{d}x,\mathrm{d}y \right\} F={P,Q},dl={dx,dy} ,格林公式可以进一步写为
∬ D ∣ ∂ ∂ x ∂ ∂ y P Q ∣ d x d y = ∮ ∂ D F ⋅ d l (0.5) \iint_D{\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right|\mathrm{d}x\mathrm{d}y}=\oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}} \tag{0.5} DxPyQdxdy=DFdl(0.5)
还记得高数讲得旋度公式 ∇ × F = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \nabla \times \boldsymbol{F}=\left| \begin{matrix} \boldsymbol{\hat{x}}& \boldsymbol{\hat{y}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ P& Q& R\\\end{matrix} \right| ×F=x^xPy^yQz^zR 吗?是不是感觉和这里很像?因为这里的 F \boldsymbol{F} F 没有 z z z 分量,所以这里有 ∇ × F = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y 0 P Q 0 ∣ = z ^ ∣ ∂ ∂ x ∂ ∂ y P Q ∣ \nabla \times \boldsymbol{F}=\left| \begin{matrix} \boldsymbol{\hat{x}}& \boldsymbol{\hat{y}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& 0\\ P& Q& 0\\\end{matrix} \right| = \boldsymbol{\hat{z}}\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right| ×F=x^xPy^yQz^00=z^xPyQ 。如果我们再令 d S = z ^ d x d y = { 0 , 0 , d x d y } \mathrm{d}\boldsymbol{S} = \boldsymbol{\hat{z}}\mathrm{d}x\mathrm{d}y = \left\{0,0,\mathrm{d}x\mathrm{d}y\right\} dS=z^dxdy={0,0,dxdy} ,左端就等价于 ( ∇ × F ) ⋅ d S \left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S} (×F)dS 了。因此,我们最终将格林公式改写为了
∬ D ( ∇ × F ) ⋅ d S = ∮ ∂ D F ⋅ d l (0.6) \iint_D{\left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S}} =\oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}} \tag{0.6} D(×F)dS=DFdl(0.6)

0.4、高斯公式

在讲三重积分时,我们引入了高斯公式
∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∯ ∂ Ω ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S (0.7) \iiint_{\Omega}{\left( \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \right) \mathrm{d}V}=\oiint_{\partial \Omega}{\left( P\cos \alpha +Q\cos \beta +R\cos \gamma \right) \mathrm{d}S} \tag{0.7} Ω(xP+yQ+zR)dV= Ω(Pcosα+Qcosβ+Rcosγ)dS(0.7)
其中曲线 ∂ Ω \partial \Omega Ω 是实心空间立体区域 Ω \Omega Ω边界曲面(例如球体的边界曲面就是球面)。

并且,与格林公式类似地,我们令 F = { P , Q , R } , d S = d S { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \boldsymbol{F}=\left\{ P,Q,R \right\} ,\mathrm{d}\boldsymbol{S}=\mathrm{d}S\left\{ \cos\alpha, \cos\beta, \cos\gamma \right\} F={P,Q,R},dS=dS{cosα,cosβ,cosγ} ,并引入散度算子 ∇ = { ∂ ∂ x , ∂ ∂ y , ∂ ∂ z } \nabla=\left\{ \frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z} \right\} ={x,y,z} ,此时 ∇ ⋅ F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z \nabla \cdot \boldsymbol{F}= \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} F=xP+yQ+zR 。我们可以把高斯公式改写为
∭ Ω ( ∇ ⋅ F ) d V = ∯ ∂ Ω F ⋅ d S (0.8) \iiint_{\Omega}{\left( \nabla \cdot \boldsymbol{F} \right) \mathrm{d}V}=\oiint_{\partial \Omega}{\boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S}} \tag{0.8} Ω(F)dV= ΩFdS(0.8)

0.5、斯托克斯公式

通过格林公式和高斯公式的练习,是不是有些找到感觉了?让我们来看看最后一个公式——斯托克斯公式。事实上,我们可以认为斯托克斯公式是格林公式向三维的自然推广

高数讲的斯托克斯公式是
∬ S ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ ∂ S P d x + Q d y + R d z (0.9) \iint_S{\left( \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z} \right) \mathrm{d}y\mathrm{d}z+\left( \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x} \right) \mathrm{d}z\mathrm{d}x+\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) \mathrm{d}x\mathrm{d}y}=\oint_{\partial S}{P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z} \tag{0.9} S(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy=SPdx+Qdy+Rdz(0.9)
F = { P , Q , R } , d l = { d x , d y , d z } \boldsymbol{F}=\left\{ P,Q,R \right\} ,\mathrm{d}\boldsymbol{l}=\left\{ \mathrm{d}x,\mathrm{d}y,\mathrm{d}z \right\} F={P,Q,R},dl={dx,dy,dz} ,借助高数讲得旋度公式 ∇ × F = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \nabla \times \boldsymbol{F}=\left| \begin{matrix} \boldsymbol{\hat{x}}& \boldsymbol{\hat{y}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ P& Q& R\\\end{matrix} \right| ×F=x^xPy^yQz^zR ,再令 d S = x ^ d y d z + y ^ d z d x + z ^ d x d y = { d y d z , d z d x , d x d y } \mathrm{d}\boldsymbol{S} = \boldsymbol{\hat{x}}\mathrm{d}y\mathrm{d}z +\boldsymbol{\hat{y}}\mathrm{d}z\mathrm{d}x+\boldsymbol{\hat{z}}\mathrm{d}x\mathrm{d}y= \left\{\mathrm{d}y\mathrm{d}z,\mathrm{d}z\mathrm{d}x,\mathrm{d}x\mathrm{d}y\right\} dS=x^dydz+y^dzdx+z^dxdy={dydz,dzdx,dxdy} ,斯托克斯公式就能化为和格林公式一样的形式了。
∬ D ( ∇ × F ) ⋅ d S = ∮ ∂ D F ⋅ d l (0.10) \iint_D{\left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S}} =\oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}} \tag{0.10} D(×F)dS=DFdl(0.10)

0.6、广义斯托克斯公式(牛顿莱布尼茨公式的推广)

在这里,我不加证明也不加说明地给出「广义斯托克斯公式」,这一公式将上面的所有公式统一了起来。至于这一公式的含义,则需要阅读完本文全文后才能理解,本文将会讲解本公式中涉及的所有符号
∫ Ω d ω = ∫ ∂ Ω ω (0.11) \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega} \tag{0.11} Ωdω=Ωω(0.11)
相信第一次看到这个公式的同学们是懵逼的,因为一堆符号看起来认识,但和我们认知中的并不一样。比如:里面的 ∂ Ω \partial \Omega Ω 是什么意思?为什么右面的积分符号 ∫ \int 没有配套 d x \mathrm{d}x dx ?左面的 d ω \mathrm{d}\omega dω 是什么含义?让我们带着这些疑问来看本文的内容吧

1、记号说明

:如果嫌太长不想看的话,每一段前面都几句话总结环节。

浓缩的都是精华,短的公式不一定好理解,因为每一个符号背后的含义可能都十分复杂。不要看 ∫ Ω d ω = ∫ ∂ Ω ω \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega} Ωdω=Ωω 这个公式很短,但在这一个短短的公式中,却蕴含了十分多的数学知识。接下来,让我们以这个公式为主线,来探索这些符号的含义,以及学习这些数学知识

1.1、求边界记号∂Ω的含义

几句话总结:假设 Ω \Omega Ω 代表一个区域,那么 ∂ Ω \partial \Omega Ω 代表区域的边界。比如平面上的实心圆、三维空间的半球面,边界就是一个圆。球体的边界就是一个球面。

首先引入一个求边界记号 ∂ \partial ,假设 Ω \Omega Ω 代表一个区域,那么 ∂ Ω \partial \Omega Ω 代表区域的边界

下面举几个直观的例子——

  • 如果 l l l 代表一条直线(如一个区间), ∂ l \partial l l 就代表它的两端点(如该区间端点)。
  • 如果 D D D 代表一个平面(如一个实心圆), ∂ D \partial D D 就代表它的边界曲线(如该圆边界)。
  • 如果 V V V 代表空间中的一个体(如一个实心球体), ∂ V \partial V V 就代表它的边界曲面(如该球表面)。

再举一个具体的例子,假设 V = { ( x , y , z ) ∣ x 2 + y 2 + z 2 ⩽ 1 } V=\left\{ \left( x,y,z \right) |x^2+y^2+z^2\leqslant 1 \right\} V={(x,y,z)x2+y2+z21} 3 3 3 维的单位球,那么 ∂ V \partial V V 就是它的边界,即 2 2 2 自由度的球面 ∂ V = { ( x , y , z ) ∣ x 2 + y 2 + z 2 = 1 } \partial V=\left\{ \left( x,y,z \right) |x^2+y^2+z^2=1 \right\} V={(x,y,z)x2+y2+z2=1}所谓自由度,就是自由移动的程度。比如球面只能向着 2 2 2 个方向自由移动,无法向着半径方向自由移动,所以球面的自由度为 2 2 2 )。

1.2、流形

几句话总结:无论处于几维空间,曲线被称为 1 1 1 维流形,曲面被称为 2 2 2 维流形,三维体被称为 3 3 3 维流形,这于所处空间的维度无关。例如 3 3 3 维空间中的圆是曲线,所以是 1 1 1 维流形。 3 3 3 维空间中的球面是曲面,所以是 2 2 2 维流形。

我们知道 V = { ( x , y , z ) ∣ x 2 + y 2 + z 2 ⩽ 1 } V=\left\{ \left( x,y,z \right) |x^2+y^2+z^2\leqslant 1 \right\} V={(x,y,z)x2+y2+z21} 3 3 3 维的单位球,所以它的维度是 3 3 3 。那么问题来了,它的边界球面 ∂ V = { ( x , y , z ) ∣ x 2 + y 2 + z 2 = 1 } \partial V=\left\{ \left( x,y,z \right) |x^2+y^2+z^2=1 \right\} V={(x,y,z)x2+y2+z2=1} 的“维度”是多少呢?

我们通过直觉会感觉到,球面比起球少了一个自由度。也就是说,球面无法在半径方向自由移动,所以球面的“维度”理应是 2 2 2 ,即使它确实处在 3 3 3 维空间中,但想象一个住在球面上的居民,它只能往两个方向自由移动,所以它理应是 2 2 2 维的,只是被嵌入了 3 3 3 维空间。

同理,一条三维空间中的曲线,它真正的自由度只有 1 1 1 ,因为想象一个住在曲线上的居民,它只能往一个方向自由移动,所以它理应是 1 1 1 维的,只是被嵌入了 3 3 3 维空间。

为了准确地描述这一现象,并且将曲线、曲面、体统一起来,我们将它们命名为“流形”。其中

  • 只要是曲线,无论处于几维空间,都将其称为 1 1 1 维流形。
  • 只要是曲面,无论处于几维空间,都将其称为 2 2 2 维流形。
  • 只要是三维体,无论处于几维空间,都将其称为 3 3 3 维流形。
  • 只要是 n n n 维体,无论处于几维空间,都将其称为 n n n 维流形。

例如超平面 S n − 1 = { ( x 1 , x 2 , ⋯   , x n ) ∣ x 1 + x 2 + ⋯ + x n = 1 } S_{n-1}=\left\{ \left( x_1,x_2,\cdots ,x_n \right) |x_1+x_2+\cdots +x_n = 1 \right\} Sn1={(x1,x2,,xn)x1+x2++xn=1} 就是一个 n − 1 n-1 n1 维的流形。

1.3、楔形积(dx∧dy)=-(dy∧dx)

几句话总结:对于第二类曲面积分而言,曲面微元是具有方向的,而方向则是由右手法则确定的。 d x ∧ d y \mathrm{d}x \wedge \mathrm{d}y dxdy 是从 x x x 指向 y y y d y ∧ d x \mathrm{d}y \wedge \mathrm{d}x dydx 是从 y y y 指向 x x x ,自然相差一个负号。于是楔形积满足反交换律 d x ∧ d y = − d y ∧ d x \mathrm{d}x \wedge \mathrm{d}y = -\mathrm{d}y \wedge \mathrm{d}x dxdy=dydx

我们约定 x ^ \boldsymbol{\hat{x}} x^ 代表与 x \boldsymbol{x} x 向量同向的单位方向向量

在高数中,我们知道曲面是有正面和反面的说法的。比如第二类曲面积分, F \boldsymbol{F} F d S \mathrm{d}\boldsymbol{S} dS 方向一致的话,那么积分为正,方向相反则积分为负。那么这个 d S \mathrm{d}\boldsymbol{S} dS方向究竟是什么呢

我们可以通过下图清楚地看出——法向量 n ^ \boldsymbol{\hat{n}} n^ 的方向由 d x \mathrm{d}x dx d y \mathrm{d}y dy 的右手法则确定, d S \mathrm{d}\boldsymbol{S} dS 相当于 d x \mathrm{d}x dx d y \mathrm{d}y dy 之间的叉乘/外积。伸出右手,四指从 d x \mathrm{d}x dx d y \mathrm{d}y dy 绕,此时大拇指的指向就是法向量 n ^ \boldsymbol{\hat{n}} n^ 的方向。我们将其记为 n ^ ( d x ∧ d y ) \boldsymbol{\hat{n}} \left( \mathrm{d}x \wedge \mathrm{d}y \right) n^(dxdy) ,它代表方向与 n ^ \boldsymbol{\hat{n}} n^ 同向,大小为 d x ⋅ d y ⋅ sin ⁡ θ \mathrm{d}x \cdot \mathrm{d}y\cdot \sin \theta dxdysinθ 的面积微元。

请添加图片描述

那么,由图不难看出, d y ∧ d x \mathrm{d}y \wedge \mathrm{d}x dydx 的方向与法向量 n ^ \boldsymbol{\hat{n}} n^ 的反方向,所以应当有下表达式成立:
d x ∧ d y = − d y ∧ d x (1.1) \mathrm{d}x \wedge \mathrm{d}y = -\mathrm{d}y \wedge \mathrm{d}x \tag{1.1} dxdy=dydx(1.1)
在三维空间中——

  • d l = { d x , d y , d z } \mathrm{d}\boldsymbol{l}=\left\{ \mathrm{d}x,\mathrm{d}y,\mathrm{d}z \right\} dl={dx,dy,dz} 代表与曲线方向向量同向的矢量线微元。
  • d S = { d y ∧ d z , d z ∧ d x , d x ∧ d y } \mathrm{d}\boldsymbol{S}=\left\{ \mathrm{d}y \wedge \mathrm{d}z,\mathrm{d}z \wedge \mathrm{d}x,\mathrm{d}x \wedge \mathrm{d}y \right\} dS={dydz,dzdx,dxdy} 代表与曲面法向量同向的矢量面微元。
  • 因为空间只有 3 3 3 维,因此 d V = d x ∧ d y ∧ d z \mathrm{d}V=\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z dV=dxdydz 代表标量体积微元。

当然,这一公式可以推广到高维,我们称之为“反交换律”,即交换两个元素后,等式添加一个负号

1.4、外微分记号dω的含义

几句话总结:如果 ω \omega ω 是一个三元函数 ω = f ( x , y , z ) \omega=f\left(x,y,z\right) ω=f(x,y,z) ,那么 ω \omega ω 被称为「第零次外微分形式」,其微分满足:
d ω = ( ∇ f ) ⋅ ( d l ) (1.2) \mathrm{d}\omega =\left( \nabla f \right) \cdot \left( \mathrm{d}\boldsymbol{l} \right) \tag{1.2} dω=(f)(dl)(1.2)
如果设 F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ω \omega ω 是一个一维的微元 ω = F ⋅ d l = P d x + Q d y + R d z \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{l}=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z ω=Fdl=Pdx+Qdy+Rdz ,那么 ω \omega ω 被称为「第一次外微分形式」,其微分满足:
d ω = ( ∇ × F ) ⋅ ( d S ) (1.3) \mathrm{d}\omega =\left( \nabla \times \boldsymbol{F} \right) \cdot \left( \mathrm{d} \boldsymbol{S} \right) \tag{1.3} dω=(×F)(dS)(1.3)
如果设 F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ω \omega ω 是一个二维的微元 ω = F ⋅ d S = P d y ∧ d z + Q d z ∧ d x + R d x ∧ d y \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{S} = P \mathrm{d}y\land \mathrm{d}z+Q \mathrm{d}z\land \mathrm{d}x+R \mathrm{d}x\land \mathrm{d}y ω=FdS=Pdydz+Qdzdx+Rdxdy ,那么 ω \omega ω 被称为「第二次外微分形式」,其微分满足:
d ω = ( ∇ ⋅ F ) ⋅ ( d V ) (1.4) \mathrm{d}\omega =\left( \nabla \cdot \boldsymbol{F} \right) \cdot \left( \mathrm{d} V \right) \tag{1.4} dω=(F)(dV)(1.4)
我们可以这么总结: ω \omega ω 是几次外微分形式,关键看 ω = F ⋅ d ? \omega = \boldsymbol{F}\cdot \mathrm{d}? ω=Fd? ? ? ? 是几维,外微分就是几次形式零次形式 ω \omega ω 的外微分是梯度乘以弧长微元 d ω = ( ∇ f ) ⋅ ( d l ) \mathrm{d}\omega =\left( \nabla f \right) \cdot \left( \mathrm{d}\boldsymbol{l} \right) dω=(f)(dl)一次形式 ω \omega ω 的外微分是旋度乘以面积微元 ( ∇ × F ) ⋅ ( d S ) \left( \nabla \times \boldsymbol{F} \right) \cdot \left( \mathrm{d} \boldsymbol{S} \right) (×F)(dS)二次形式 ω \omega ω 的外微分是散度乘以体积微元 ( ∇ ⋅ F ) ⋅ ( d V ) \left( \nabla \cdot \boldsymbol{F} \right) \cdot \left( \mathrm{d} V \right) (F)(dV)

d ω \mathrm{d}\omega dω 这个玩意被我们称为外微分

我们假设 ω \omega ω 是一个三元函数 ω = f ( x , y , z ) \omega=f\left(x,y,z\right) ω=f(x,y,z)因为这里还没开始进行外微分运算,我们称 ω \omega ω 为「第零次外微分形式」。那么根据全微分法则,「『第零次外微分形式』的微分」为
d ω = ∂ f ∂ x d x + ∂ f ∂ y d y + ∂ f ∂ z d z \mathrm{d}\omega =\frac{\partial f}{\partial x}\mathrm{d}x+\frac{\partial f}{\partial y}\mathrm{d}y+\frac{\partial f}{\partial z}\mathrm{d}z dω=xfdx+yfdy+zfdz
我们求出了 d ω \mathrm{d}\omega dω

进一步地,我们知道 f f f 的梯度为 ∇ f = { ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z } \nabla f=\left\{ \frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z} \right\} f={xf,yf,zf} ,并记弧长方向向量微元 d l = { d x , d y , d z } \mathrm{d}\boldsymbol{l}=\left\{ \mathrm{d}x,\mathrm{d}y,\mathrm{d}z \right\} dl={dx,dy,dz} ,得到「『第零次外微分形式』的微分」:
d ω = ( ∇ f ) ⋅ ( d l ) (1.2) \mathrm{d}\omega =\left( \nabla f \right) \cdot \left( \mathrm{d}\boldsymbol{l} \right) \tag{1.2} dω=(f)(dl)(1.2)
那么,我们自然会想:设 F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ω = F ⋅ d l = P d x + Q d y + R d z \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{l}=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z ω=Fdl=Pdx+Qdy+Rdz 能不能继续微分下去,也就是求出 d ω \mathrm{d}\omega dω因为这里的形式与「『第零次外微分形式』的微分」很像,我们称 ω \omega ω 为「第一次外微分形式」

我们对其进行一次微分,得到
d ω = d P ∧ d x + d Q ∧ d y + d R ∧ d z \mathrm{d}\omega =\mathrm{d}P\wedge \mathrm{d}x+\mathrm{d}Q\wedge \mathrm{d}y+\mathrm{d}R\wedge \mathrm{d}z dω=dPdx+dQdy+dRdz
这个公式我就不予证明了。结合全微分公式
{ d P = ∂ P ∂ x d x + ∂ P ∂ y d y + ∂ P ∂ z d z d Q = ∂ Q ∂ x d x + ∂ Q ∂ y d y + ∂ Q ∂ z d z d R = ∂ R ∂ x d x + ∂ R ∂ y d y + ∂ R ∂ z d z \begin{cases} \mathrm{d}P=\frac{\partial P}{\partial x}\mathrm{d}x+\frac{\partial P}{\partial y}\mathrm{d}y+\frac{\partial P}{\partial z}\mathrm{d}z\\ \mathrm{d}Q=\frac{\partial Q}{\partial x}\mathrm{d}x+\frac{\partial Q}{\partial y}\mathrm{d}y+\frac{\partial Q}{\partial z}\mathrm{d}z\\ \mathrm{d}R=\frac{\partial R}{\partial x}\mathrm{d}x+\frac{\partial R}{\partial y}\mathrm{d}y+\frac{\partial R}{\partial z}\mathrm{d}z\\ \end{cases} dP=xPdx+yPdy+zPdzdQ=xQdx+yQdy+zQdzdR=xRdx+yRdy+zRdz
以及 d x ∧ d x = d y ∧ d y = d z ∧ d z = 0 \mathrm{d}x \wedge \mathrm{d}x=\mathrm{d}y \wedge \mathrm{d}y=\mathrm{d}z \wedge \mathrm{d}z=0 dxdx=dydy=dzdz=0 ,和反交换律 d x ∧ d y = − d y ∧ d x \mathrm{d}x \wedge \mathrm{d}y=-\mathrm{d}y \wedge \mathrm{d}x dxdy=dydx ,得到「『第一次外微分形式』的微分」:
d ω = d P ∧ d x + d Q ∧ d y + d R ∧ d z = ( ∂ P ∂ y d y + ∂ P ∂ z d z ) ∧ d x + ( ∂ Q ∂ x d x + ∂ Q ∂ z ) ∧ d y + ( ∂ R ∂ x d x + ∂ R ∂ y d y ) ∧ d z = ( ∂ R ∂ y − ∂ Q ∂ z ) d y ∧ d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z ∧ d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x ∧ d y \begin{aligned} \mathrm{d}\omega &=\mathrm{d}P\land \mathrm{d}x+\mathrm{d}Q\land \mathrm{d}y+\mathrm{d}R\land \mathrm{d}z\\ &=\left( \frac{\partial P}{\partial y}\mathrm{d}y+\frac{\partial P}{\partial z}\mathrm{d}z \right) \land \mathrm{d}x+\left( \frac{\partial Q}{\partial x}\mathrm{d}x+\frac{\partial Q}{\partial z} \right) \land \mathrm{d}y+\left( \frac{\partial R}{\partial x}\mathrm{d}x+\frac{\partial R}{\partial y}\mathrm{d}y \right) \land \mathrm{d}z\\ &=\left( \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z} \right) \mathrm{d}y\land \mathrm{d}z+\left( \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x} \right) \mathrm{d}z\land \mathrm{d}x+\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) \mathrm{d}x\land \mathrm{d}y\\ \end{aligned} dω=dPdx+dQdy+dRdz=(yPdy+zPdz)dx+(xQdx+zQ)dy+(xRdx+yRdy)dz=(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy
F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ,注意到旋度公式
∇ × F = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = x ^ ( ∂ R ∂ y − ∂ Q ∂ z ) + y ^ ( ∂ P ∂ z − ∂ R ∂ x ) + z ^ ( ∂ Q ∂ x − ∂ P ∂ y ) = { ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y } \begin{aligned} \nabla \times \boldsymbol{F}&=\left| \begin{matrix} \boldsymbol{\hat{x}}& \boldsymbol{\hat{y}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ P& Q& R\\ \end{matrix} \right|\\ &=\boldsymbol{\hat{x}}\left( \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z} \right) +\boldsymbol{\hat{y}}\left( \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x} \right) +\boldsymbol{\hat{z}}\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right)\\ &=\left\{ \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right\}\\ \end{aligned} ×F=x^xPy^yQz^zR=x^(yRzQ)+y^(zPxR)+z^(xQyP)={yRzQ,zPxR,xQyP}
再令 d S = { d y ∧ d z , d z ∧ d x , d x ∧ d y } \mathrm{d} \boldsymbol{S} = \left\{ \mathrm{d}y\land \mathrm{d}z,\mathrm{d}z\land \mathrm{d}x,\mathrm{d}x\land \mathrm{d}y \right\} dS={dydz,dzdx,dxdy} ,就求出了「『第一次外微分形式』的微分」:
d ω = ( ∇ × F ) ⋅ ( d S ) (1.3) \mathrm{d}\omega =\left( \nabla \times \boldsymbol{F} \right) \cdot \left( \mathrm{d} \boldsymbol{S} \right) \tag{1.3} dω=(×F)(dS)(1.3)
进一步地,我们还能求「第二次外微分形式」。令 ω = F ⋅ d S = P d y ∧ d z + Q d z ∧ d x + R d x ∧ d y \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{S} = P \mathrm{d}y\land \mathrm{d}z+Q \mathrm{d}z\land \mathrm{d}x+R \mathrm{d}x\land \mathrm{d}y ω=FdS=Pdydz+Qdzdx+Rdxdy ,称之为「第二次外微分形式」,得
d ω = d P ∧ d y ∧ d z + d Q ∧ d z ∧ d x + d R ∧ d x ∧ d y \mathrm{d}\omega =\mathrm{d}P\land \mathrm{d}y\land \mathrm{d}z+\mathrm{d}Q\land \mathrm{d}z\land \mathrm{d}x+\mathrm{d}R\land \mathrm{d}x\land \mathrm{d}y dω=dPdydz+dQdzdx+dRdxdy
与上面的推导类似地,结合全微分公式
{ d P = ∂ P ∂ x d x + ∂ P ∂ y d y + ∂ P ∂ z d z d Q = ∂ Q ∂ x d x + ∂ Q ∂ y d y + ∂ Q ∂ z d z d R = ∂ R ∂ x d x + ∂ R ∂ y d y + ∂ R ∂ z d z \begin{cases} \mathrm{d}P=\frac{\partial P}{\partial x}\mathrm{d}x+\frac{\partial P}{\partial y}\mathrm{d}y+\frac{\partial P}{\partial z}\mathrm{d}z\\ \mathrm{d}Q=\frac{\partial Q}{\partial x}\mathrm{d}x+\frac{\partial Q}{\partial y}\mathrm{d}y+\frac{\partial Q}{\partial z}\mathrm{d}z\\ \mathrm{d}R=\frac{\partial R}{\partial x}\mathrm{d}x+\frac{\partial R}{\partial y}\mathrm{d}y+\frac{\partial R}{\partial z}\mathrm{d}z\\ \end{cases} dP=xPdx+yPdy+zPdzdQ=xQdx+yQdy+zQdzdR=xRdx+yRdy+zRdz
以及 d x ∧ d x = d y ∧ d y = d z ∧ d z = 0 \mathrm{d}x \wedge \mathrm{d}x=\mathrm{d}y \wedge \mathrm{d}y=\mathrm{d}z \wedge \mathrm{d}z=0 dxdx=dydy=dzdz=0 ,和反交换律 d x ∧ d y = − d y ∧ d x \mathrm{d}x \wedge \mathrm{d}y=-\mathrm{d}y \wedge \mathrm{d}x dxdy=dydx ,得到「『第二次外微分形式』的微分」:
d ω = d P ∧ d y ∧ d z + d Q ∧ d z ∧ d x + d R ∧ d x ∧ d y = ∂ P ∂ x d x ∧ d y ∧ d z + ∂ Q ∂ y d y ∧ d z ∧ d x + ∂ R ∂ z d z ∧ d x ∧ d y = ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x ∧ d y ∧ d z \begin{aligned} \mathrm{d}\omega &=\mathrm{d}P\land \mathrm{d}y\land \mathrm{d}z+\mathrm{d}Q\land \mathrm{d}z\land \mathrm{d}x+\mathrm{d}R\land \mathrm{d}x\land \mathrm{d}y\\ &=\frac{\partial P}{\partial x}\mathrm{d}x\land \mathrm{d}y\land \mathrm{d}z+\frac{\partial Q}{\partial y}\mathrm{d}y\land \mathrm{d}z\land \mathrm{d}x+\frac{\partial R}{\partial z}\mathrm{d}z\land \mathrm{d}x\land \mathrm{d}y\\ &=\left( \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \right) \mathrm{d}x\land \mathrm{d}y\land \mathrm{d}z\\ \end{aligned} dω=dPdydz+dQdzdx+dRdxdy=xPdxdydz+yQdydzdx+zRdzdxdy=(xP+yQ+zR)dxdydz
F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ,注意到散度公式 ∇ ⋅ F = ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) \nabla \cdot \boldsymbol{F} = \left( \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \right) F=(xP+yQ+zR) ,再令 d V = d x ∧ d y ∧ d z \mathrm{d} V = \mathrm{d}x\land \mathrm{d}y \land \mathrm{d}z dV=dxdydz ,就求出了「『第二次外微分形式』的微分」:
d ω = ( ∇ ⋅ F ) ⋅ ( d V ) (1.4) \mathrm{d}\omega =\left( \nabla \cdot \boldsymbol{F} \right) \cdot \left( \mathrm{d} V \right) \tag{1.4} dω=(F)(dV)(1.4)

2、用「广义斯托克斯公式」推导「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」

广义斯托克斯公式是——
∫ Ω d ω = ∫ ∂ Ω ω (0.11) \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega} \tag{0.11} Ωdω=Ωω(0.11)

2.1、牛顿-莱布尼茨公式

一维的牛顿-莱布尼茨公式是——
∫ [ a , b ] d f = f ( b ) − f ( a ) (0.2) \int_{\left[ a,b \right]}{ \mathrm{d}f}=f\left( b \right) -f\left( a \right) \tag{0.2} [a,b]df=f(b)f(a)(0.2)
或者考虑二、三维情形,写成
∫ L ( ∇ f ) ⋅ d l = f ( x 2 ) − f ( x 1 ) (2.1) \int_{L}{ \left(\nabla f\right) \cdot \mathrm{d}\boldsymbol{l}}=f\left( \boldsymbol{x}_2 \right) -f\left( \boldsymbol{x}_1 \right)\tag{2.1} L(f)dl=f(x2)f(x1)(2.1)
令区域 Ω = [ a , b ] \Omega=\left[ a,b \right] Ω=[a,b] ,则边界点 ∂ Ω = a , b \partial \Omega=a,b Ω=a,b ,函数 ω = f \omega = f ω=f零次外微分形式

∫ ∂ Ω ω = f ( b ) − f ( a ) \int_{\partial \Omega}{\omega} = f\left( b \right) -f\left( a \right) Ωω=f(b)f(a) ,自然有一维的牛顿-莱布尼茨公式——
∫ [ a , b ] d f = ∫ Ω d ω = ∫ ∂ Ω ω = f ( b ) − f ( a ) (2.2) \int_{\left[ a,b \right]}{ \mathrm{d}f} = \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=f\left( b \right) -f\left( a \right) \tag{2.2} [a,b]df=Ωdω=Ωω=f(b)f(a)(2.2)
或者令考虑二、三维情形,令区域 Ω = L \Omega=L Ω=L ,则边界点 ∂ Ω = x 1 , x 2 \partial \Omega=\boldsymbol{x}_1,\boldsymbol{x}_2 Ω=x1,x2 ,函数 ω = f \omega = f ω=f零次外微分形式

∫ ∂ Ω ω = f ( x 2 ) − f ( x 1 ) \int_{\partial \Omega}{\omega} = f\left( \boldsymbol{x}_2 \right) -f\left( \boldsymbol{x}_1 \right) Ωω=f(x2)f(x1) d ω = ( ∇ f ) ⋅ d l \mathrm{d}\omega=\left(\nabla f\right) \cdot \mathrm{d}\boldsymbol{l} dω=(f)dl ,自然有二、三维的牛顿-莱布尼茨公式——
∫ L ( ∇ f ) ⋅ d l = ∫ Ω d ω = ∫ ∂ Ω ω = f ( x 2 ) − f ( x 1 ) (2.3) \int_{L}{ \left(\nabla f\right) \cdot \mathrm{d}\boldsymbol{l}}= \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=f\left( \boldsymbol{x}_2 \right) -f\left( \boldsymbol{x}_1 \right)\tag{2.3} L(f)dl=Ωdω=Ωω=f(x2)f(x1)(2.3)

2.2、格林公式&斯托克斯公式

格林公式和斯托克斯公式都是——
∬ D ( ∇ × F ) ⋅ d S = ∮ ∂ D F ⋅ d l (0.6) \iint_D{\left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S}} =\oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}} \tag{0.6} D(×F)dS=DFdl(0.6)
唯一的区别就是:格林公式是二维情形,斯托克斯公式是三维情形。这一点类似于一维的牛顿-莱布尼茨公式与二、三维的牛顿-莱布尼茨公式。

令区域 Ω = D \Omega=D Ω=D ,则 ∂ Ω \partial \Omega Ω 是边界曲线,函数 ω = F ⋅ d l \omega = \boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l} ω=Fdl一次外微分形式

∫ ∂ Ω ω = ∮ ∂ D F ⋅ d l \int_{\partial \Omega}{\omega} = \oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}} Ωω=DFdl d ω = ( ∇ × F ) ⋅ d S \mathrm{d}\omega=\left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S} dω=(×F)dS ,自然有格林公式和斯托克斯公式——
∬ D ( ∇ × F ) ⋅ d S = ∫ Ω d ω = ∫ ∂ Ω ω = ∮ ∂ D F ⋅ d l (2.4) \iint_D{\left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S}} = \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=\oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}}\tag{2.4} D(×F)dS=Ωdω=Ωω=DFdl(2.4)

2.3、高斯公式

高斯公式是——
∭ Ω ( ∇ ⋅ F ) d V = ∯ ∂ Ω F ⋅ d S (0.8) \iiint_{\Omega}{\left( \nabla \cdot \boldsymbol{F} \right) \mathrm{d}V}=\oiint_{\partial \Omega}{\boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S}} \tag{0.8} Ω(F)dV= ΩFdS(0.8)
令区域为 Ω \Omega Ω ,则 ∂ Ω \partial \Omega Ω 是边界曲线,函数 ω = F ⋅ d S \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{S} ω=FdS二次外微分形式

∫ ∂ Ω ω = ∯ ∂ Ω F ⋅ d S \int_{\partial \Omega}{\omega} = \oiint_{\partial \Omega}{\boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S}} Ωω= ΩFdS d ω = d ω = ( ∇ ⋅ F ) ⋅ ( d V ) \mathrm{d}\omega=\mathrm{d}\omega =\left( \nabla \cdot \boldsymbol{F} \right) \cdot \left( \mathrm{d} V \right) dω=dω=(F)(dV) ,自然有高斯公式——
∭ Ω ( ∇ ⋅ F ) d V = ∫ Ω d ω = ∫ ∂ Ω ω = ∯ ∂ Ω F ⋅ d S (2.5) \iiint_{\Omega}{\left( \nabla \cdot \boldsymbol{F} \right) \mathrm{d}V}= \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=\oiint_{\partial \Omega}{\boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S}}\tag{2.5} Ω(F)dV=Ωdω=Ωω= ΩFdS(2.5)

3、总结

我们利用了广义斯托克斯公式——
∫ Ω d ω = ∫ ∂ Ω ω (0.11) \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega} \tag{0.11} Ωdω=Ωω(0.11)
通过将不同次数外微分形式的 ω \omega ω 代入,并选择与之维度匹配的区域 Ω \Omega Ω ,就得到了对应的公式。其中——

0 0 0 次外微分形式 ω = f \omega = f ω=f ,区域 Ω = L \Omega=L Ω=L 代入,得到一、二、三维的「牛顿-莱布尼茨公式」
∫ L ( ∇ f ) ⋅ d l = ∫ Ω d ω = ∫ ∂ Ω ω = f ( x 2 ) − f ( x 1 ) (2.3) \int_{L}{ \left(\nabla f\right) \cdot \mathrm{d}\boldsymbol{l}}= \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=f\left( \boldsymbol{x}_2 \right) -f\left( \boldsymbol{x}_1 \right)\tag{2.3} L(f)dl=Ωdω=Ωω=f(x2)f(x1)(2.3)
1 1 1 次外微分形式 ω = F ⋅ d l \omega = \boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l} ω=Fdl ,区域 Ω = D \Omega=D Ω=D 代入,得到二维的「格林公式」和三维的「斯托克斯公式」
∬ D ( ∇ × F ) ⋅ d S = ∫ Ω d ω = ∫ ∂ Ω ω = ∮ ∂ D F ⋅ d l (2.4) \iint_D{\left(\nabla \times \boldsymbol{F}\right)\cdot \mathrm{d}\boldsymbol{S}} = \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=\oint_{\partial D}{\boldsymbol{F} \cdot\mathrm{d}\boldsymbol{l}}\tag{2.4} D(×F)dS=Ωdω=Ωω=DFdl(2.4)
2 2 2 次外微分形式 ω = F ⋅ d S \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{S} ω=FdS ,区域 Ω \Omega Ω 代入,得到「牛顿-莱布尼茨公式」
∭ Ω ( ∇ ⋅ F ) d V = ∫ Ω d ω = ∫ ∂ Ω ω = ∯ ∂ Ω F ⋅ d S (2.5) \iiint_{\Omega}{\left( \nabla \cdot \boldsymbol{F} \right) \mathrm{d}V}= \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega}=\oiint_{\partial \Omega}{\boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S}}\tag{2.5} Ω(F)dV=Ωdω=Ωω= ΩFdS(2.5)
其中利用了结论——

如果 ω \omega ω 是一个三元函数 ω = f ( x , y , z ) \omega=f\left(x,y,z\right) ω=f(x,y,z) ,那么 ω \omega ω 被称为「第零次外微分形式」,其微分满足:
d ω = ( ∇ f ) ⋅ ( d l ) (1.2) \mathrm{d}\omega =\left( \nabla f \right) \cdot \left( \mathrm{d}\boldsymbol{l} \right) \tag{1.2} dω=(f)(dl)(1.2)
如果设 F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ω \omega ω 是一个一维的微元 ω = F ⋅ d l = P d x + Q d y + R d z \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{l}=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z ω=Fdl=Pdx+Qdy+Rdz ,那么 ω \omega ω 被称为「第一次外微分形式」,其微分满足:
d ω = ( ∇ × F ) ⋅ ( d S ) (1.3) \mathrm{d}\omega =\left( \nabla \times \boldsymbol{F} \right) \cdot \left( \mathrm{d} \boldsymbol{S} \right) \tag{1.3} dω=(×F)(dS)(1.3)
如果设 F = { P , Q , R } \boldsymbol{F}=\left\{ P,Q,R \right\} F={P,Q,R} ω \omega ω 是一个二维的微元 ω = F ⋅ d S = P d y ∧ d z + Q d z ∧ d x + R d x ∧ d y \omega = \boldsymbol{F}\cdot \mathrm{d}\boldsymbol{S} = P \mathrm{d}y\land \mathrm{d}z+Q \mathrm{d}z\land \mathrm{d}x+R \mathrm{d}x\land \mathrm{d}y ω=FdS=Pdydz+Qdzdx+Rdxdy ,那么 ω \omega ω 被称为「第二次外微分形式」,其微分满足:
d ω = ( ∇ ⋅ F ) ⋅ ( d V ) (1.4) \mathrm{d}\omega =\left( \nabla \cdot \boldsymbol{F} \right) \cdot \left( \mathrm{d} V \right) \tag{1.4} dω=(F)(dV)(1.4)

不难发现,这种方法可以推广到 n n n 维。

  • 10
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值