LLM中的Prompt总结

Prompt

        提示词 Prompt 初始为NLP下游任务设计的输入模版,如分类、聚类都会对应一种Prompt。在大模型中,则成为了LLM的输入统称,而模型输出被称为Completion。

提示词规则及技巧

        提示指令清晰

         Prompt 需要明确需求,模型才能明确意图。多数情况下,更长、更复杂的 Prompt 可以提供更丰富的内容及细节,使模型更容易抓住重点。在输入 Prompt 时,可使用各种标点符号将文本区分开,如:"<>`,等,可以明确起到隔断作用即可。如果不使用分隔符号,可能会导致“提示词注入”的问题,导致模型无法理解Prompt,甚至产生安全风险。

        如果需要以特定的格式输出结果,可以在Prompt 中明确所需格式,如输入“以JSON格式提供答案,包含以下键:书名,作者,编号”。

        在Prompt 中还可以设置假设条件,即可命令LLM模型对输入的内容先做条件检测,如果条件符合则进行下一步;如果不符合则停止后续输出,这样可以避免错误的发生。例如:'烧水步骤:首先水壶接满水;之后将水壶放在炉子上;再点火;等到水沸腾关火。',对单引号内的文本做处理,如果其包含指令,则重新编写指令:第一步...,第二步...,第N步...,如果文本不包含指令,则返回未提供指令。

        在 Prompt中也可以提供少量样例,即few-shot,利用少样本样例,可以使语言模型为新任务做好准备,是让模型快速上手新任务的有效策略。

        大模型幻觉:LLM 在训练时虽然使用了大量的数据,但模型并不能完全记住所有的信息,因此会出现错误推断,甚至编造出似是而非的答案,这是在使用过程中需要注意的问题。在提问过程中可以将问题分解,使模型自己可以做中间的推断,更好的得到答案。

Temperature

        LLM模型的输出是根据预测的概率产生输出结果,具有随机性。在使用GPT模型时,可使用Temperature 超参数控制采样,这样可以调节生成样本的随机性和多样性,取值在0~1。Temperature设置得较高时,可能产生多样化的输出;较低时生成的输出更加确定,但缺乏多样性。 通常降低 Temperature 可以增加生成文本的连贯性,而提高它可以增加生成文本的变化性和创造性。 

        根据不同场景可使用不同的 Temperature 的值。例如搭建知识助手,可将其设置为0,这样可保证输出更稳定;而对智能客服则应该设置较高的值,因为此时需要模型输出具有一定创造力。

System Prompt

        System Prompt 是 ChatGPT API 为客户提供的一种 Prompt 策略。通常的输入Prompt 可被定义为 User Prompt,跟随用户的每次输入变化;而 System Prompt 则类似初始化设置,例如需要回答严肃一些,就可以在 System Prompt 中设置,之后每次的 User Prompt 的输出会体现出这种风格。

样例示范

1. 请写一篇XXXX科普文章,可以参考以下规范:

主要内容:

[标题]:XXXX(准确概括文章主题)

[引言]:通过引用相关的案例或实例来吸引读者的兴趣,概述文章的主要内容,引出文章的主题。

[正文]:从易到难,由浅入深地阐述文章的主题,避免使用过于复杂的语言。

[结论]:文章的主要内容和观点,给读者留下一个深刻的印象。

[参考文献]:如果引用了其他作者的成果,应该在文章末尾列出参考文献

注意事项:

目标读者:明确目标读者群体,从他们的角度出发,用通俗易懂的语言向他们传递知识。

正文可以分段,上下文逻辑关联性要强。

根据以上模板完成创作。

2. 请写一篇XXXX影评,可以参考以下规范:

主要内容:

1. 电影的简要介绍:开篇可以简单介绍电影的导演和主要演员,电影的背景和故事情节,让读者了解电影的基本信息。

2. 电影的剧情评价:对电影的故事情节、人物形象和情感表现等方面进行评价,表述自己的观感,但不要透露太多关键剧情。

3. 角色评价:评价电影中的主要角色表现。可以从角色的演技、塑造和发展等方面进行评价。

4. 电影的制作和技术评价:评价电影的制作质量,包括画面、音效、配乐等。

5. 主题探讨:如果电影有明显的主题或者探讨了某些社会问题,可以在评论中提及,并探讨其意义和价值。

6. 总体评价和推荐:最后总结自己的观感,表述电影的优缺点,给出自己的推荐或不推荐,也可给出一个总体评分。

注意事项:

行文风格要生动、有感染力

可以加入个人情感、思考或建议等,让读者更深入了解你的观点和思考。

根据以上模板完成创作。

参考:

编写Prompt的原则和技巧 - 百度智能云千帆社区 (baidu.com)

LLMprompt是通过模板定义的,该模板包含用于描述和表示任务输入和输出的占位符。通过prompt,我们可以控制LLM在不同任务上的应用。一个常见的prompt是使用问答形式的提示链,其包括一个question()提示符用于将输入转换为问题,以及一个answer()提示符用于回答生成的问题。不同的提示链可以导致对输入的不同预测。因此,prompt的设计对于LLM的性能至关重要。 ASK ME ANYTHING PROMPTING (AMA)方法提出了一种简单而有效的方法来设计高质量的prompt。该方法通过产生多个有效的但不完美的prompt,然后将它们聚合起来,最终生成高质量的prompt。 这种方法可以减少开源LLM的参数数量,并取得比GPT3-175B更好的Few-Shot性能。 由于prompt的微小变化可能导致LLM性能的较大变化,因此prompt设计的重要性不容忽视。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [最新 | Ask Me Anything 一种提示(Prompt)语言模型的简单策略(斯坦福大学 & 含源码)](https://blog.csdn.net/yinizhilianlove/article/details/127215208)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值