DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!
CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations
引言:挑战与机遇——在多重未知退化条件下的目标检测
在计算机视觉领域,目标检测是一项基础且关键的任务,其目标是从图像中识别出特定物体的位置和类别。随着深度学习技术的发展,基于深度学习的目标检测方法取得了显著的进展。然而,当图像质量受到退化影响时,如雾霾、低光照、雪天和雨天等条件,目标检测的性能会受到严重影响。传统的解决方案通常涉及对图像进行预处理,如图像恢复和增强,以提高图像质量。但这种简单的预处理并不总能确保检测性能的提升,有时甚至会带来副作用。此外,现有方法在面对未知多重退化时的适应性不足,无法满足真实世界环境的需求。
本文提出了一种新颖的方法——CPA-Enhancer,它是一种链式思考(Chain-of-Thought,CoT)引导的自适应增强模块,旨在改善未知多重退化条件下的目标检测性能。CPA-Enhancer能够在不预先知道退化类型的情况下,通过CoT提示逐步引导模型调整其增强策略。这一方法不仅在多重退化条件下取得了有利的检测结果,而且还提升了其他下游视觉任务的性能。
论文概览与贡献
-
论文标题:CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations
-
机构:Tongji University, Zhejiang University, Southeast University
-
论文链接:[https://arxiv.org/pdf/2403.11220.pdf]
CPA-Enhancer模型的主要贡献