论文分享:突破视觉边界:新型CPA-Enhancer模型助力目标检测在恶劣环境下精准识别

本文介绍了一种名为CPA-Enhancer的方法,通过链式思考(CoT)引导的自适应增强模块,提升在未知多重退化条件下的目标检测性能。实验结果表明,CPA-Enhancer在各种退化场景下超越了现有方法,同时对下游视觉任务也有积极影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!

CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations

在这里插入图片描述

引言:挑战与机遇——在多重未知退化条件下的目标检测

在计算机视觉领域,目标检测是一项基础且关键的任务,其目标是从图像中识别出特定物体的位置和类别。随着深度学习技术的发展,基于深度学习的目标检测方法取得了显著的进展。然而,当图像质量受到退化影响时,如雾霾、低光照、雪天和雨天等条件,目标检测的性能会受到严重影响。传统的解决方案通常涉及对图像进行预处理,如图像恢复和增强,以提高图像质量。但这种简单的预处理并不总能确保检测性能的提升,有时甚至会带来副作用。此外,现有方法在面对未知多重退化时的适应性不足,无法满足真实世界环境的需求。

本文提出了一种新颖的方法——CPA-Enhancer,它是一种链式思考(Chain-of-Thought,CoT)引导的自适应增强模块,旨在改善未知多重退化条件下的目标检测性能。CPA-Enhancer能够在不预先知道退化类型的情况下,通过CoT提示逐步引导模型调整其增强策略。这一方法不仅在多重退化条件下取得了有利的检测结果,而且还提升了其他下游视觉任务的性能。

论文概览与贡献

  • 论文标题:CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations

  • 机构:Tongji University, Zhejiang University, Southeast University

  • 论文链接:[https://arxiv.org/pdf/2403.11220.pdf]

在这里插入图片描述

CPA-Enhancer模型的主要贡献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值