1 内容介绍
SCA 算法是基于正弦余弦数学模型进而提出的一种新型优化算法.一般来说,智能优化算法的初 始点往往随机选取一系列个体,虽然无法保证在一 次迭代过程中就能找到最优解,但如果有足够的个 体和迭代次数,并利用目标函数进行反复评价,SCA 算法可大大增加获得最优解的概率.
2 仿真代码
% Sine Cosine Algorithm (SCA)
%
% Main paper:
% S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems
% Knowledge-Based Systems, DOI: http://dx.doi.org/10.1016/j.knosys.2015.12.022
%_______________________________________________________________________________________________
% You can simply define your cost function in a seperate file and load its handle to fobj
% The initial parameters that you need are:
%__________________________________________
% fobj = @YourCostFunction
% dim = number of your variables
% Max_iteration = maximum number of iterations
% SearchAgents_no = number of search agents
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define lb and ub as two single numbers
% To run SCA: [Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)
%______________________________________________________________________________________________
clear all
clc
SearchAgents_no=30; % Number of search agents
Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)
Max_iteration=1000; % Maximum numbef of iterations
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure('Position',[284 214 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Test function')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
grid off
%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','b')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best flame (score) obtained so far');
axis tight
grid off
box on
legend('SCA')
display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by SCA is : ', num2str(Best_score)]);
3 运行结果
4 参考文献
[1]陈聪, 马良, 刘勇. 函数优化的量子正弦余弦算法[J]. 计算机应用研究, 2017, 34(11):5.
[2]崔东文. 正弦余弦算法-投影寻踪水污染物总量分配模型[J]. 水资源保护, 2016, 32(6):8.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。