【智能优化算法-正弦余弦算法】基于正弦余弦算法求解高维优化问题附matlab代码

该博客介绍了正弦余弦算法(SCA)的基础原理及其在解决优化问题中的应用。通过Matlab代码示例,展示了如何设置参数并运行SCA算法来寻找测试函数的最佳解。仿真结果包括搜索空间和目标函数收敛曲线的可视化展示,以及最佳解和最优目标函数值的输出。
摘要由CSDN通过智能技术生成

1 内容介绍

SCA 算法是基于正弦余弦数学模型而提出一种新型优化算法一般来说智能优化算法初 始点往往随机选取一系列个体虽然无法保证一 次迭代就能找最优解但如果足够个 体和迭代次数并利用目标函数进行反复评价SCA 算法大大增加获得最优解概率

2 仿真代码

%  Sine Cosine Algorithm (SCA)  
%                                                                                                     
%  Main paper:                                                                                        
%  S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems
%  Knowledge-Based Systems, DOI: http://dx.doi.org/10.1016/j.knosys.2015.12.022
%_______________________________________________________________________________________________
% You can simply define your cost function in a seperate file and load its handle to fobj 
% The initial parameters that you need are:
%__________________________________________
% fobj = @YourCostFunction
% dim = number of your variables
% Max_iteration = maximum number of iterations
% SearchAgents_no = number of search agents
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define lb and ub as two single numbers

% To run SCA: [Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)
%______________________________________________________________________________________________

clear all 
clc

SearchAgents_no=30; % Number of search agents

Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=1000; % Maximum numbef of iterations

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[284   214   660   290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Test function')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
grid off

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','b')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best flame (score) obtained so far');

axis tight
grid off
box on
legend('SCA')

display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by SCA is : ', num2str(Best_score)]);

        

​​​​​​​3 运行结果

4 参考文献

[1]陈聪, 马良, 刘勇. 函数优化的量子正弦余弦算法[J]. 计算机应用研究, 2017, 34(11):5.

[2]崔东文. 正弦余弦算法-投影寻踪水污染物总量分配模型[J]. 水资源保护, 2016, 32(6):8.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值