✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着无人机技术的快速发展,多无人机协作控制已成为研究热点。本文提出了一种基于快速探索随机树(RRT)的多无人机运动控制系统,该系统能够有效解决多无人机协作避障和路径规划问题。
1. 引言
多无人机协作控制在军事、工业和民用等领域有着广泛的应用前景。然而,多无人机协作避障和路径规划是一个复杂且具有挑战性的问题,需要考虑无人机之间的相互作用、环境障碍物以及实时性要求。
2. 快速探索随机树(RRT)
RRT是一种基于采样和连接的随机运动规划算法。其基本思想是:
-
随机采样:从配置空间中随机采样一个点。
-
最近邻搜索:在已有的树中找到与采样点最近的点。
-
连接:将采样点与最近邻点连接,形成一条新的路径。
-
重复:重复上述步骤,直到找到目标点或达到最大迭代次数。
3. 基于RRT的多无人机运动控制系统
本文提出的多无人机运动控制系统基于RRT算法,主要包括以下模块:
-
**路径规划模块:**使用RRT算法为每个无人机生成避障路径。
-
**协作避障模块:**根据无人机之间的相对位置和运动状态,计算无人机之间的安全距离,并采取避障措施。
-
**实时控制模块:**根据路径规划和协作避障模块的输出,实时控制无人机的运动。
4. 系统仿真
为了验证系统的有效性,进行了仿真实验。实验中,设置了多个无人机和障碍物,无人机需要协作避障并到达指定目标点。
仿真结果表明,基于RRT的多无人机运动控制系统能够有效解决多无人机协作避障和路径规划问题,无人机能够安全高效地到达目标点。
5. 结论
本文提出了一种基于RRT的多无人机运动控制系统,该系统能够有效解决多无人机协作避障和路径规划问题。仿真实验验证了系统的有效性,为多无人机协作控制提供了新的思路。
参考文献
-
LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.
-
Chen, Y., & Wang, Z. (2018). Multi-agent path planning based on RRT. In 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE) (pp. 1-5). IEEE.和实验中进行了评估。仿真结果表明,该系统能够有效地控制多无人机系统,避免碰撞并保持编队。实验结果也证实了仿真的结果。
结论
本文提出了一种基于RRT的多无人机运动控制系统。该系统采用分层控制架构,其中高层控制器负责路径规划,低层控制器负责跟踪路径。RRT算法用于生成无碰撞路径,并通过使用DWA方法进行优化。该系统在仿真和实验中进行了评估,结果表明该系统能够有效地控制多无人机系统,避免碰撞并保持编队。
📣 部分代码
clc;clear;close all;
dim = 3;
random_world = 0;
% create random world
world_size = 100;
NumObstacles = 100;
if random_world ==1
world = createWorld(NumObstacles,ones(1,dim)*world_size,zeros(1,dim));
else
[world,NumObstacles] = createKnownWorld(ones(1,dim)*world_size,[0;0;0],world_size);
end
UAV_num=10; % number of UAVs
start=zeros(UAV_num,3);goal=zeros(UAV_num,3);
path=cell(1,UAV_num);tree=cell(1,UAV_num);
inflec=cell(1,UAV_num);traj=cell(1,UAV_num);
% generate start & goal point
for i=1:UAV_num
start(i,1)=i*rand;goal(i,1)=i*rand+(world_size-UAV_num);
start(i,2)=i*rand;goal(i,2)=i*rand+(world_size-UAV_num);
start(i,3)=i*rand;goal(i,3)=i*rand+(world_size-UAV_num);
end
% generate RRT path
for i=1:UAV_num
[path{i},tree{i}]=getPath(start(i,:), goal(i,:), world);
[inflec{i},~,traj{i}]=getTrajectory(path{i});
% % draw RRT result
% figure
% plotExpandedTree(world,tree{i},3);
% plotWorld(world,path{i},1);
end
figure
for i=1:UAV_num
plotWorld(world,path{i},2);
hold on
end
UAVsize=1;colLimit=3*UAVsize;
[newTrajectory, coltime]=multiDetCon(traj,inflec,colLimit);
getGIFTra(newTrajectory);
% twoTrajDis(newTrajectory{1},newTrajectory{2},colLimit);
% multiTrajInflec(traj);
% multiTrajInflec(inflec);
%
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类