【无人机控制】基于快速探索随机树RRT的多无人机运动控制系统附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

随着无人机技术的快速发展,多无人机协作控制已成为研究热点。本文提出了一种基于快速探索随机树(RRT)的多无人机运动控制系统,该系统能够有效解决多无人机协作避障和路径规划问题。

1. 引言

多无人机协作控制在军事、工业和民用等领域有着广泛的应用前景。然而,多无人机协作避障和路径规划是一个复杂且具有挑战性的问题,需要考虑无人机之间的相互作用、环境障碍物以及实时性要求。

2. 快速探索随机树(RRT)

RRT是一种基于采样和连接的随机运动规划算法。其基本思想是:

  1. 随机采样:从配置空间中随机采样一个点。

  2. 最近邻搜索:在已有的树中找到与采样点最近的点。

  3. 连接:将采样点与最近邻点连接,形成一条新的路径。

  4. 重复:重复上述步骤,直到找到目标点或达到最大迭代次数。

3. 基于RRT的多无人机运动控制系统

本文提出的多无人机运动控制系统基于RRT算法,主要包括以下模块:

  1. **路径规划模块:**使用RRT算法为每个无人机生成避障路径。

  2. **协作避障模块:**根据无人机之间的相对位置和运动状态,计算无人机之间的安全距离,并采取避障措施。

  3. **实时控制模块:**根据路径规划和协作避障模块的输出,实时控制无人机的运动。

4. 系统仿真

为了验证系统的有效性,进行了仿真实验。实验中,设置了多个无人机和障碍物,无人机需要协作避障并到达指定目标点。

仿真结果表明,基于RRT的多无人机运动控制系统能够有效解决多无人机协作避障和路径规划问题,无人机能够安全高效地到达目标点。

5. 结论

本文提出了一种基于RRT的多无人机运动控制系统,该系统能够有效解决多无人机协作避障和路径规划问题。仿真实验验证了系统的有效性,为多无人机协作控制提供了新的思路。

参考文献

  1. LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

  2. Chen, Y., & Wang, Z. (2018). Multi-agent path planning based on RRT. In 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE) (pp. 1-5). IEEE.和实验中进行了评估。仿真结果表明,该系统能够有效地控制多无人机系统,避免碰撞并保持编队。实验结果也证实了仿真的结果。

结论

本文提出了一种基于RRT的多无人机运动控制系统。该系统采用分层控制架构,其中高层控制器负责路径规划,低层控制器负责跟踪路径。RRT算法用于生成无碰撞路径,并通过使用DWA方法进行优化。该系统在仿真和实验中进行了评估,结果表明该系统能够有效地控制多无人机系统,避免碰撞并保持编队。

📣 部分代码

clc;clear;close all;dim = 3;random_world = 0;% create random worldworld_size = 100;NumObstacles = 100;if random_world ==1    world = createWorld(NumObstacles,ones(1,dim)*world_size,zeros(1,dim));else    [world,NumObstacles] = createKnownWorld(ones(1,dim)*world_size,[0;0;0],world_size);endUAV_num=10; % number of UAVsstart=zeros(UAV_num,3);goal=zeros(UAV_num,3);path=cell(1,UAV_num);tree=cell(1,UAV_num);inflec=cell(1,UAV_num);traj=cell(1,UAV_num);% generate start & goal pointfor i=1:UAV_num    start(i,1)=i*rand;goal(i,1)=i*rand+(world_size-UAV_num);    start(i,2)=i*rand;goal(i,2)=i*rand+(world_size-UAV_num);    start(i,3)=i*rand;goal(i,3)=i*rand+(world_size-UAV_num);end% generate RRT pathfor i=1:UAV_num    [path{i},tree{i}]=getPath(start(i,:), goal(i,:), world);    [inflec{i},~,traj{i}]=getTrajectory(path{i});%     % draw RRT result%     figure%     plotExpandedTree(world,tree{i},3);%     plotWorld(world,path{i},1);endfigurefor i=1:UAV_num    plotWorld(world,path{i},2);    hold onendUAVsize=1;colLimit=3*UAVsize;[newTrajectory, coltime]=multiDetCon(traj,inflec,colLimit);getGIFTra(newTrajectory);% twoTrajDis(newTrajectory{1},newTrajectory{2},colLimit);% multiTrajInflec(traj);% multiTrajInflec(inflec);% 

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值