✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
风电功率预测对于电网稳定运行和可再生能源消纳至关重要。本文提出了一种基于豪猪算法优化卷积神经网络结合注意力机制的长短记忆网络(CPO-CNN-LSTM-Attention)模型,用于风电功率多输入单输出回归预测。该模型结合了卷积神经网络(CNN)的特征提取能力、长短记忆网络(LSTM)的时序建模能力和注意力机制的重点关注能力,并通过豪猪算法对模型参数进行优化,提高预测精度。
1. 引言
风电作为一种清洁可再生能源,其不稳定性给电网运行带来挑战。准确的风电功率预测对于电网调度、储能系统优化和可再生能源消纳具有重要意义。传统的风电功率预测方法主要基于统计模型,如自回归滑动平均(ARIMA)模型和支持向量机(SVM)模型,但这些模型难以捕捉风电功率的非线性变化和时序特征。
近年来,深度学习在风电功率预测领域得到了广泛应用。卷积神经网络(CNN)可以提取时序数据的局部特征,长短记忆网络(LSTM)可以建模时序数据的长期依赖关系。注意力机制可以重点关注输入序列中与预测目标相关的重要特征。
2. CPO-CNN-LSTM-Attention模型
本文提出的CPO-CNN-LSTM-Attention模型由以下部分组成:
-
**卷积神经网络(CNN)层:**提取时序数据的局部特征。
-
**长短记忆网络(LSTM)层:**建模时序数据的长期依赖关系。
-
**注意力机制:**重点关注与预测目标相关的重要特征。
-
**豪猪算法:**优化模型参数,提高预测精度。
2.1 卷积神经网络(CNN)层
CNN层采用一维卷积核对输入时序数据进行卷积操作,提取局部特征。卷积核的大小和数量可以根据实际情况进行调整。
2.2 长短记忆网络(LSTM)层
LSTM层采用门控循环单元(GRU)作为基本单元,可以有效地建模时序数据的长期依赖关系。LSTM层堆叠多个层,以增强模型的学习能力。
2.3 注意力机制
注意力机制采用点积注意力机制,计算输入时序数据中每个时间步与预测目标之间的相似度,并根据相似度对输入时序数据进行加权求和,得到与预测目标相关的重点特征。
2.4 豪猪算法
豪猪算法是一种基于群体智能的优化算法,模拟豪猪群体在避免碰撞的情况下寻找食物的行为。本文采用豪猪算法对CPO-CNN-LSTM-Attention模型的参数进行优化,包括学习率、卷积核大小、LSTM层数等。
3. 实验结果
本文使用真实的风电场数据对CPO-CNN-LSTM-Attention模型进行实验验证。实验结果表明,该模型在预测精度和鲁棒性方面均优于传统的统计模型和深度学习模型。
4. 结论
本文提出的CPO-CNN-LSTM-Attention模型通过结合卷积神经网络、长短记忆网络、注意力机制和豪猪算法,有效地提高了风电功率多输入单输出回归预测的精度。该模型为风电功率预测提供了一种新的思路,具有广阔的应用前景。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 姚越,刘达.基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测[J].现代电力, 2022(002):039.
[2] 邵星,曹洪宇,王翠香,等.一种基于注意力机制的VMD-CNN-LSTM短期风电功率预测方法:CN202211414113.7[P].CN115907120A[2024-03-30].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类