【资源分配】基于LINEAR和ROOT-FINDING实现OFDMA系统资源分配(含对比)附Matlab复现

本文探讨了OFDMA系统中的资源分配策略,包括吞吐量最大化、发送功率最小化和公平性准则,并介绍了子载波分配方案,重点讲解了水填充算法的应用。涉及智能优化算法、神经网络预测、无线传感器网络和电力系统等多个技术领域。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

​1引言

OFDMA系统能够允许多个用户同时传输每个OFDM符号的不同子载波。由于概率,所有用户在特定子载波中经历深度衰落非常低,可以确保子载波被分配给那些收益很好的用户。分配子载波问题已经成为OFDMA系统中的重要环节。为了最大限度地提高总容量,每个副载波应尽可能分配给用户获得利益。

2 OFDMA系统资源分配原则

为了充分的利用系统里的各种资源,就必须采用联合的分配算法。基于不同的优化目的,OFDMA系统的资源分配策略可以分为以下几类:吞吐量最大化原则、OFDMA系统的资源分配发送功率最小化原则和公平性原则。

(1)吞吐量最大化原则吞吐量最大化原则    在给定发射功率和传输质量即误码率的约束下,使系统中所有用户、所有子信道上的数据速率之和最大。通常采用注水算法以及在其基础上增强的自适应算法。

(2)发送功率最小化原则    发送功率最小化原则就是在给定传输速率和传输质量即误码率的约束下,使系统中所有用户、所有子信道上的发射功率之和最小。

(3)公平性准则    基于公平性准则的分配算法就是在给定发射功率和传输质量即误码率的约束下,使系统中每个用户获得最公平的数据速率。具体如何定义公平性,现在没有一个统一的概念,但比较完备的公平性准则应该至少包括用户的速率要求和时延要求。OFDMA系统作为一个多用户的系统,应该为每位用户保证其资源分配的公平性,如果单纯考虑提高系统的吞吐量的话,会导致低性能的用户有可能一直分配不到资源,影响到该用户的通信。为了增加用户公平性,会以牺牲吞吐量为代价,所以权衡吞吐量和公平性的算法才是好的分配算法。

3子载波分配方案

在基站发射机上,K个用户的位被分配给N个子载波,用户k(1≤kK)的n(1≤nN)个子载波被分配一个功率p。假设那些子载波不被不同的用户共享。然后,将每一个用户的比特调制成M级的QAM符号,随后使用IFFT组合成为OFDMA符号,通过它传输一个缓慢时变的频率选择性瑞利通道,使得子载波分配通过控制通道向所有用户传递,因此每个用户仅需要对其分配的子载波上的比特进行解码。假设每个用户经历独立的衰落并且表示用户k在子载波n中的信道增益,假设每个用户能够完美地估计频道,然后将这些通道估计值用作输入资源分配算法。

子载波分配允许每个确定的用户轮流为它选择最佳副载波,具有最小比例容量的用户容易优先选择他最好的副载波。

📣 部分代码

<span style="color:#333333"><span style="background-color:#fafafa"><code>​</code><code>% This program is free software; you can redistribute it <span style="color:#ca7d37">and</span>/<span style="color:#ca7d37">or</span></code><code>% modify it under the terms of the GNU General Public License</code><code>% as published by the Free Software Foundation; either version <span style="color:#0e9ce5">2</span></code><code>% of the License, <span style="color:#ca7d37">or</span> (at your option) any later version.</code><code>% </code><code>% This program is distributed in the hope that it will be useful,</code><code>% but WITHOUT ANY WARRANTY; without even the implied warranty of</code><code>% MERCHANTABILITY <span style="color:#ca7d37">or</span> FITNESS FOR A PARTICULAR PURPOSE.  See the</code><code>% GNU General Public License <span style="color:#ca7d37">for</span> more details.</code><code>% </code><code>% You should have received a copy of the GNU General Public License</code><code>% along with this program; <span style="color:#ca7d37">if</span> <span style="color:#ca7d37">not</span>, <span style="color:#ca7d37">write</span> to the Free Software</code><code>% Foundation, Inc., <span style="color:#0e9ce5">59</span> Temple Place - Suite <span style="color:#0e9ce5">330</span>, Boston, MA  <span style="color:#0e9ce5">02111</span>-<span style="color:#0e9ce5">1307</span>, USA.</code><code>% </code><code>% You may reach the author at wongic@mail.utexas.edu.</code><code>% Or visit his website at www.ece.utexas.edu/~iwong</code><code>​</code><code>function [capacity] = waterfilling(Ptot,eigenVec)</code><code>eigenVec=eigenVec+<span style="color:#0e9ce5">1</span>e-<span style="color:#0e9ce5">10</span>;</code><code>eigenVec=eigenVec(:);</code><code>sortedEigVec=<span style="color:#ca7d37">sort</span>(eigenVec);</code><code>​</code><code>EigVecTemp=sortedEigVec;</code><code>​</code><code>​</code><code>single = <span style="color:#0e9ce5">0</span>;</code><code><span style="color:#ca7d37">while</span> sum((EigVecTemp-EigVecTemp(<span style="color:#0e9ce5">1</span>)*ones(<span style="color:#ca7d37">length</span>(EigVecTemp),<span style="color:#0e9ce5">1</span>))./(EigVecTemp*EigVecTemp(<span style="color:#0e9ce5">1</span>)))>Ptot</code><code>    EigVecTemp=EigVecTemp(<span style="color:#0e9ce5">2</span>:<span style="color:#ca7d37">length</span>(EigVecTemp));</code><code>    <span style="color:#ca7d37">if</span> <span style="color:#ca7d37">length</span>(EigVecTemp) < <span style="color:#0e9ce5">2</span>,</code><code>        single = <span style="color:#0e9ce5">1</span>;</code><code>        <span style="color:#ca7d37">break</span>;</code><code>    end;        </code><code>end;</code><code><span style="color:#ca7d37">if</span> single == <span style="color:#0e9ce5">1</span>,</code><code>    capacity = log2(Ptot*EigVecTemp);</code><code><span style="color:#ca7d37">else</span>,</code><code>  P1=(Ptot-sum((EigVecTemp-EigVecTemp(<span style="color:#0e9ce5">1</span>)*ones(<span style="color:#ca7d37">length</span>(EigVecTemp),<span style="color:#0e9ce5">1</span>))./(EigVecTemp*EigVecTemp(<span style="color:#0e9ce5">1</span>))))/<span style="color:#ca7d37">length</span>(EigVecTemp);</code><code>  mu=P1+<span style="color:#0e9ce5">1</span>/EigVecTemp(<span style="color:#0e9ce5">1</span>);</code><code>  capacity=sum(log2(mu*EigVecTemp));</code><code>end;</code><code>​</code></span></span>

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值