✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种用于路径跟踪控制的新型数据驱动的最优自适应容错控制方法。该方法利用数据驱动技术和最优控制理论,设计了一个自适应容错控制器,可以实时调整控制参数,以应对系统故障和不确定性。仿真结果表明,该方法可以有效提高路径跟踪控制的鲁棒性和性能。
引言
路径跟踪控制是移动机器人和自动驾驶汽车等自主系统中的一个关键问题。传统路径跟踪控制方法通常依赖于精确的系统模型和环境信息。然而,在实际应用中,系统故障和环境不确定性不可避免,这会严重影响控制性能。
方法
本文提出的方法包括以下几个步骤:
-
**数据收集:**收集系统在不同故障和环境条件下的状态和控制数据。
-
**模型识别:**使用数据驱动技术(如机器学习)识别系统模型,包括故障模型和不确定性模型。
-
**最优控制设计:**基于识别的系统模型,设计一个最优控制律,该控制律可以最小化路径跟踪误差,同时考虑系统故障和不确定性。
-
**自适应调整:**实时监测系统状态和控制数据,并根据数据驱动模型调整控制参数,以适应故障和不确定性的变化。
仿真结果
为了验证该方法的有效性,我们进行了仿真实验。仿真结果表明,该方法在以下方面具有优势:
-
**鲁棒性:**该方法可以有效应对系统故障和环境不确定性,保持路径跟踪控制的稳定性和准确性。
-
**自适应性:**该方法可以实时调整控制参数,以适应故障和不确定性的变化,提高控制性能。
-
**最优性:**该方法基于最优控制理论,可以最小化路径跟踪误差,优化控制性能。
结论
本文提出了一种基于数据驱动的最优自适应容错控制方法用于路径跟踪控制。该方法利用数据驱动技术和最优控制理论,设计了一个自适应容错控制器,可以实时调整控制参数,以应对系统故障和不确定性。仿真结果表明,该方法可以有效提高路径跟踪控制的鲁棒性和性能。
📣 部分代码
function [mu_xk,var_xk] = predict_state_sequence(d_GP, mu_x0, var_x0, uk, mpc_params, angular_v_des_seq)
n = mpc_params.state_size;
N = mpc_params.N;
mu_xk = zeros(n,N+1);
var_xk = zeros(n,n,N+1);
mu_xk(:,1) = mu_x0;
var_xk(:,:,1) = var_x0;
for iN=1:N
index = iN;
[mu_xk(:,iN+1),var_xk(:,:,iN+1)] = state_prediction(d_GP, mpc_params, mu_xk(:,iN), var_xk(:,:,iN), uk(2*iN-1:2*iN), index, angular_v_des_seq);
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类