✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、狮群优化算法LSO简介
狮群优化算法(Lion Swarm Optimization, LSO)是一种模拟狮子觅食行为的优化算法。它通过模拟狮子在寻找食物过程中的相互协作和竞争行为,来实现对目标函数的优化。LSO具有全局搜索能力强、收敛速度快、鲁棒性强等优点,适用于解决多种复杂的优化问题。
二、BP回归预测原理
BP(Back Propagation)神经网络是一种多层前馈神经网络,广泛应用于非线性系统的建模和预测。BP神经网络通过反向传播算法,不断调整网络权重,使得网络输出与实际输出之间的误差最小化。BP回归预测就是利用BP神经网络对输入数据进行拟合,从而实现对未来数据的预测。
三、基于LSO的BP回归预测方法
1. 数据预处理
首先,我们需要对光伏数据进行预处理,包括数据清洗、缺失值处理、归一化等操作,以消除数据中的噪声和异常值,提高数据质量。
2. 构建BP神经网络
根据光伏数据的输入输出特性,我们可以构建一个多层前馈神经网络。网络的输入层节点数等于输入变量的数量,输出层节点数等于输出变量的数量。隐藏层节点数可以根据需要进行调整。
3. 利用LSO优化BP神经网络权重
将预处理后的光伏数据作为LSO的输入,将BP神经网络的权重作为LSO的搜索空间。通过LSO算法搜索最优的权重组合,使得BP神经网络的预测误差最小。
4. 光伏数据预测
将实时采集的光伏数据输入到训练好的BP神经网络中,即可得到对未来光伏数据的预测结果。
⛳️ 运行结果



🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类