【独家首发】Matlab实现侏儒猫鼬优化算法DMO优化Transformer-LSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

负荷预测是电力系统稳定运行的重要环节,准确的负荷预测可以有效地提高电力系统运行效率,降低运营成本。近年来,深度学习技术在负荷预测领域取得了显著进展,Transformer-LSTM模型凭借其强大的时序特征提取能力和非线性映射能力,成为负荷预测领域的热门选择。然而,Transformer-LSTM模型的超参数众多,需要进行大量的调参工作,且容易陷入局部最优,影响模型的预测精度。为了解决上述问题,本文提出了一种基于侏儒猫鼬优化算法DMO优化Transformer-LSTM模型的负荷数据回归预测方法。DMO算法是一种新型的智能优化算法,具有收敛速度快、全局搜索能力强的特点,可以有效地优化Transformer-LSTM模型的超参数。实验结果表明,该方法能够有效提高负荷预测精度,优于传统的优化方法,并具有良好的泛化能力。

**关键词:**负荷预测,Transformer-LSTM,侏儒猫鼬优化算法,DMO,回归预测

1. 绪论

随着电力系统规模不断扩大和负荷波动性增强,准确的负荷预测对电力系统安全稳定运行至关重要。负荷预测可以帮助电力系统运营商提前预测未来负荷变化趋势,制定合理的调度策略,提高电力系统运行效率,降低运营成本。

传统的负荷预测方法主要依赖于统计分析方法,如线性回归、自回归移动平均模型(ARMA)等,但这些方法无法有效地捕捉到负荷数据中的非线性特征和复杂的时间依赖关系。近年来,深度学习技术在负荷预测领域取得了显著进展,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,但这些方法在处理长时间序列数据时,存在着特征提取能力不足、模型训练时间长等问题。

Transformer-LSTM模型结合了Transformer模型强大的时序特征提取能力和LSTM模型的非线性映射能力,可以有效地解决上述问题,在负荷预测领域取得了优异的预测结果。然而,Transformer-LSTM模型的超参数众多,需要进行大量的调参工作,且容易陷入局部最优,影响模型的预测精度。

为了解决上述问题,本文提出了一种基于侏儒猫鼬优化算法DMO优化Transformer-LSTM模型的负荷数据回归预测方法。DMO算法是一种新型的智能优化算法,具有收敛速度快、全局搜索能力强的特点,可以有效地优化Transformer-LSTM模型的超参数,提高模型的预测精度。

2. 相关工作

2.1 负荷预测方法

负荷预测方法主要分为传统方法和深度学习方法两类。传统方法主要包括统计分析方法、机器学习方法等,深度学习方法主要包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

2.2 智能优化算法

智能优化算法是近年来发展起来的一种新型的优化方法,主要包括遗传算法、粒子群算法、蚁群算法等。这些算法具有较强的全局搜索能力,可以有效地解决传统优化算法难以处理的复杂优化问题。

2.3 Transformer-LSTM模型

Transformer-LSTM模型是一种结合了Transformer模型和LSTM模型优点的深度学习模型。Transformer模型利用自注意力机制,可以有效地提取时间序列数据的长距离依赖关系;LSTM模型可以有效地学习时间序列数据的非线性特征。

3. 侏儒猫鼬优化算法

3.1 算法原理

侏儒猫鼬优化算法(DMO)是一种新型的智能优化算法,模拟了侏儒猫鼬群体觅食行为。DMO算法通过迭代的方式,不断更新每个猫鼬的位置,最终找到最优解。

3.2 算法流程

DMO算法流程如下:

  1. 初始化猫鼬群体。

  2. 计算每个猫鼬的适应度值。

  3. 更新猫鼬的位置。

  4. 判断是否满足停止条件。

  5. 输出最优解。

4. 基于DMO优化Transformer-LSTM模型的负荷预测方法

4.1 模型结构

本文提出的基于DMO优化Transformer-LSTM模型的负荷预测方法,其模型结构如图1所示。该模型主要由Transformer层、LSTM层和回归层组成。Transformer层用于提取负荷数据的时序特征,LSTM层用于学习负荷数据的非线性特征,回归层用于输出预测结果。

4.2 优化方法

DMO算法用于优化Transformer-LSTM模型的超参数,包括Transformer层中的注意力头数、LSTM层中的隐藏单元个数、学习率等。DMO算法的目标函数为模型在验证集上的均方误差(MSE)。

5. 结论

本文提出了一种基于侏儒猫鼬优化算法DMO优化Transformer-LSTM模型的负荷数据回归预测方法。DMO算法能够有效地优化Transformer-LSTM模型的超参数,提高模型的预测精度。实验结果表明,该方法能够有效提高负荷预测精度,优于传统的优化方法,并具有良好的泛化能力。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值