✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
轴承作为机械设备的核心部件,其故障会导致设备的停机和经济损失。传统的轴承故障诊断方法依赖于人工经验和专业知识,存在效率低、准确率不高的问题。近年来,深度学习技术在轴承故障诊断领域取得了显著进展,其中双向时间卷积神经网络BiTCN能够有效捕捉时间序列数据中的时序特征。然而,BiTCN模型的性能严重依赖于超参数的选取,而人工调参费时费力,且难以找到全局最优解。本文提出了一种基于蚁狮优化算法ALO优化双向时间卷积神经网络BiTCN的轴承故障诊断方法。ALO算法是一种新型的元启发式优化算法,具有较强的全局搜索能力和局部寻优能力。将ALO算法应用于BiTCN模型的超参数优化,可以有效提高模型的性能。实验结果表明,本文提出的方法能够有效提高轴承故障诊断的准确率和效率,具有较好的应用价值。
关键词:轴承故障诊断,双向时间卷积神经网络,蚁狮优化算法,超参数优化,Matlab
1. 引言
轴承作为机械设备的核心部件,其可靠性直接影响着设备的正常运行。随着机械设备的不断发展,轴承故障诊断的重要性日益凸显。传统的轴承故障诊断方法主要依赖于人工经验和专业知识,存在效率低、准确率不高的问题。近年来,深度学习技术在轴承故障诊断领域取得了显著进展,其中卷积神经网络CNN能够有效提取图像特征,而循环神经网络RNN能够有效捕捉时间序列数据中的时序特征。双向时间卷积神经网络BiTCN结合了CNN和RNN的优点,能够更有效地捕捉轴承振动信号中的特征,提高故障诊断的准确率。
然而,BiTCN模型的性能严重依赖于超参数的选取,而人工调参费时费力,且难以找到全局最优解。因此,如何有效地优化BiTCN模型的超参数是提升其故障诊断性能的关键。
蚁狮优化算法ALO是一种新型的元启发式优化算法,其灵感来源于自然界中蚁狮捕食蚂蚁的行为。ALO算法具有较强的全局搜索能力和局部寻优能力,在许多优化问题中表现出色。本文将ALO算法应用于BiTCN模型的超参数优化,旨在提高模型的故障诊断性能。
2. 相关研究
近年来,深度学习技术在轴承故障诊断领域取得了显著进展,许多学者开展了相关研究。
-
卷积神经网络CNN: CNN能够有效提取图像特征,在轴承故障诊断中被广泛应用。例如,文献[1]将CNN应用于轴承振动信号的图像化处理,并取得了良好的效果。
-
循环神经网络RNN: RNN能够有效捕捉时间序列数据中的时序特征,在轴承故障诊断中也得到了广泛应用。例如,文献[2]将RNN应用于轴承振动信号的时序分析,并取得了较高的准确率。
-
双向时间卷积神经网络BiTCN: BiTCN结合了CNN和RNN的优点,能够更有效地捕捉轴承振动信号中的特征,提高故障诊断的准确率。例如,文献[3]将BiTCN应用于轴承故障诊断,并取得了较好的性能。
-
元启发式优化算法: 元启发式优化算法在许多优化问题中表现出色,在深度学习模型的超参数优化中也得到了应用。例如,文献[4]将粒子群优化算法PSO应用于CNN模型的超参数优化,有效提高了模型的性能。
3. 基于ALO算法优化BiTCN的轴承故障诊断方法
本文提出的基于ALO算法优化BiTCN的轴承故障诊断方法包括以下步骤:
-
数据采集与预处理: 收集轴承在不同工况下的振动信号,进行数据预处理,包括信号滤波、降噪、特征提取等。
-
BiTCN模型构建: 构建BiTCN模型,包括卷积层、池化层、双向循环层等。
-
ALO算法超参数优化: 使用ALO算法对BiTCN模型的超参数进行优化,例如卷积核大小、池化层大小、循环层单元数等。
-
模型训练与测试: 使用优化后的超参数训练BiTCN模型,并使用测试集评估模型的性能。
3.1 蚁狮优化算法ALO
蚁狮优化算法ALO是一种新型的元启发式优化算法,其灵感来源于自然界中蚁狮捕食蚂蚁的行为。ALO算法的核心思想是模拟蚁狮在沙坑中捕食蚂蚁的过程,通过蚁狮的移动和陷阱的构建来搜索最优解。
ALO算法主要包括以下步骤:
-
初始化蚁狮种群: 随机生成N个蚁狮个体,每个个体对应一组待优化的参数。
-
构建陷阱: 每个蚁狮根据自身的参数信息构建一个陷阱,用来捕捉蚂蚁。
-
蚂蚁运动: 模拟蚂蚁在沙坑中随机运动,寻找食物。
-
捕获蚂蚁: 蚁狮根据其陷阱的位置和大小来捕获蚂蚁。
-
更新蚁狮位置: 根据捕获的蚂蚁数量来更新每个蚁狮的位置,使其朝更优解的方向移动。
-
重复步骤2-5,直到满足停止条件: 停止条件可以是达到最大迭代次数或目标函数值满足要求。
3.2 BiTCN模型结构
BiTCN模型的结构如图1所示,包含以下几部分:
-
卷积层: 用于提取轴承振动信号的局部特征。
-
池化层: 用于降低特征维度,提高模型的泛化能力。
-
双向循环层: 用于捕捉时间序列数据中的时序特征。
-
全连接层: 用于将特征向量映射到分类结果。
图1 BiTCN模型结构图
3.3 ALO算法优化BiTCN模型超参数
本文使用ALO算法优化BiTCN模型的超参数,包括卷积核大小、池化层大小、循环层单元数等。ALO算法的输入为BiTCN模型的超参数,输出为优化后的超参数。
ALO算法的目标函数是模型的准确率。使用交叉验证方法评估模型的性能,并根据准确率来更新ALO算法中的蚁狮位置。
4. 实验与结果
实验结果表明,本文提出的方法能够有效提高轴承故障诊断的准确率。
4.3 Matlab代码
% 导入数据
data = load('data.mat');
X_train = data.X_train;
y_train = data.y_train;
X_test = data.X_test;
y_test = data.y_test;
% 构建BiTCN模型
model = biTCN(inputSize, hiddenSize, numClasses);
% 定义ALO算法参数
numAntlions = 20;
maxIterations = 100;
% 设定超参数范围
hyperparameters = {
'kernelSize', [3, 5, 7],
'poolSize', [2, 3, 4],
'hiddenSize', [32, 64, 128]
};
% 使用ALO算法优化超参数
bestHyperparameters = ALO(model, hyperparameters, numAntlions, maxIterations);
% 使用优化后的超参数训练模型
model = train(model, X_train, y_train, bestHyperparameters);
% 使用测试集评估模型性能
accuracy = test(model, X_test, y_test);
% 输出结果
fprintf('测试集准确率: %.2f%%\n', accuracy * 100);
5. 结论
本文提出了一种基于蚁狮优化算法ALO优化双向时间卷积神经网络BiTCN的轴承故障诊断方法。该方法通过ALO算法有效地优化了BiTCN模型的超参数,提高了模型的故障诊断性能。实验结果表明,本文提出的方法能够有效提高轴承故障诊断的准确率和效率,具有较好的应用价值。
-
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类