✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
轴承作为机械设备的关键部件,其可靠性直接影响着设备的正常运行。随着工业4.0的到来,智能故障诊断技术成为了保障设备安全可靠运行的重要手段。本文提出了一种基于侏儒猫鼬优化算法DMO优化双向时间卷积神经网络BiTCN的轴承数据故障诊断方法。该方法利用DMO算法对BiTCN网络的超参数进行优化,提高了模型的泛化能力和鲁棒性。同时,BiTCN网络能够有效地提取轴承振动信号中的时间特征,从而实现对不同故障类型的准确诊断。最后,本文给出了Matlab代码实现,并对该方法进行了实验验证,结果表明该方法在轴承故障诊断中取得了优异的性能。
关键词:轴承故障诊断;双向时间卷积神经网络;侏儒猫鼬优化算法;DMO;Matlab
1. 引言
轴承是机械设备中不可或缺的部件,其运行状态直接影响设备的正常工作。轴承故障会导致设备效率下降、维修成本增加甚至引发安全事故。因此,及时准确地识别和诊断轴承故障具有重要的实际意义。
传统的轴承故障诊断方法主要依赖于专家经验和人工分析,效率低下且受主观因素影响较大。近年来,随着人工智能技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。其中,卷积神经网络(CNN)凭借其强大的特征提取能力在图像识别、语音识别等领域取得了巨大成功。然而,传统的CNN模型主要针对静态数据设计,难以有效提取时间序列数据的时序特征,无法满足轴承故障诊断的需求。
为了解决这一问题,本文提出了一种基于侏儒猫鼬优化算法DMO优化双向时间卷积神经网络BiTCN的轴承数据故障诊断方法。该方法结合了DMO算法的全局优化能力和BiTCN网络的时序特征提取能力,能够有效地识别轴承的多种故障类型。
2. 双向时间卷积神经网络BiTCN
双向时间卷积神经网络BiTCN是一种针对时间序列数据设计的深度学习模型,它结合了卷积神经网络(CNN)的特征提取能力和循环神经网络(RNN)的时序建模能力。BiTCN网络结构主要包括两个方向的卷积层和一个全连接层,分别用于提取时间序列数据的前向特征和后向特征,并将两者的特征信息融合,最终实现对时间序列数据的分类或回归预测。
2.1 网络结构
BiTCN网络结构主要包括三个部分:
-
前向卷积层: 该层使用卷积核对时间序列数据进行前向卷积,提取数据的前向特征信息。
-
后向卷积层: 该层使用卷积核对时间序列数据进行后向卷积,提取数据的后向特征信息。
-
全连接层: 该层将前后向卷积层提取的特征信息进行融合,并输出分类或回归结果。
2.2 工作原理
BiTCN网络的工作原理如下:
-
将时间序列数据输入到前向卷积层,提取数据的前向特征信息。
-
将时间序列数据输入到后向卷积层,提取数据的后向特征信息。
-
将前后向卷积层提取的特征信息输入到全连接层,进行融合。
-
全连接层输出分类或回归结果。
2.3 优点
BiTCN网络具有以下优点:
-
能够有效地提取时间序列数据的时序特征。
-
对时间序列数据具有较强的鲁棒性。
-
可以处理不同长度的时间序列数据。
3. 侏儒猫鼬优化算法DMO
侏儒猫鼬优化算法DMO是一种新型的元启发式优化算法,它模拟了非洲侏儒猫鼬觅食和避险的群体行为。DMO算法具有以下特点:
-
全局搜索能力强。
-
收敛速度快。
-
参数少,易于实现。
3.1 算法原理
DMO算法主要包含以下步骤:
-
初始化种群。 随机生成一组候选解作为初始种群。
-
计算适应度值。 根据目标函数计算每个候选解的适应度值。
-
更新种群。 根据适应度值和预设的更新规则,更新种群中的候选解。
-
判断是否满足终止条件。 如果满足终止条件,则算法结束;否则,重复步骤2-4。
3.2 DMO算法的优势
DMO算法具有以下优势:
-
全局搜索能力强: DMO算法能够在搜索空间中进行全局搜索,避免陷入局部最优解。
-
收敛速度快: DMO算法的收敛速度较快,能够快速找到最优解。
-
参数少,易于实现: DMO算法的参数较少,易于实现和调试。
4. 基于DMO优化BiTCN的轴承数据故障诊断方法
基于DMO优化BiTCN的轴承数据故障诊断方法利用DMO算法对BiTCN网络的超参数进行优化,提高了模型的泛化能力和鲁棒性。具体步骤如下:
4.1 数据采集与预处理
首先,采集不同故障类型下的轴承振动信号数据。然后,对数据进行预处理,包括信号滤波、降噪、特征提取等操作,为后续模型训练提供高质量的数据。
4.2 BiTCN网络构建
根据轴承数据的特点,构建一个BiTCN网络模型。该模型包含前向卷积层、后向卷积层和全连接层,并根据实际需求设置不同层数和参数。
4.3 DMO算法优化BiTCN网络超参数
利用DMO算法对BiTCN网络的超参数进行优化,包括卷积核大小、步长、激活函数等。DMO算法通过迭代优化,找到一组最佳的超参数组合,使得BiTCN网络能够在测试集上取得最佳的诊断性能。
4.4 模型训练与测试
使用预处理后的数据训练优化后的BiTCN网络模型。训练过程中,使用交叉验证方法评估模型性能,并调整网络参数,以达到最佳的诊断效果。最终,使用测试集评估训练好的模型在实际应用中的性能。
-
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类