多输入多输出 | Matlab实现SO-BP蛇群算法优化BP神经网络多输入多输出预测

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 本文探讨了利用蛇群算法(SO)优化BP神经网络 (Back Propagation Neural Network) 用于多输入多输出 (MIMO) 系统预测的问题。传统的BP神经网络在面对复杂非线性系统时容易陷入局部最小值,收敛速度慢,预测精度不高。为了克服这些缺点,本文提出了一种基于SO-BP算法的MIMO系统预测模型。该模型利用蛇群算法的全局搜索能力来优化BP神经网络的权值和阈值,从而提高网络的预测精度和收敛速度。文章详细介绍了SO-BP算法的原理、Matlab实现过程以及在MIMO系统预测中的应用案例,并对实验结果进行了分析和讨论,验证了该方法的有效性。

关键词: 蛇群算法;BP神经网络;多输入多输出;预测;Matlab

1. 引言

随着科学技术的不断发展,越来越多的实际问题需要处理多输入多输出 (MIMO) 系统的预测问题。例如,在电力系统中,预测多个发电机的输出功率;在化工过程中,预测多个反应产物的产量;在金融领域,预测多个股票的价格等等。传统的预测方法,例如线性回归、时间序列分析等,在处理非线性系统时往往效果不佳。人工神经网络,特别是BP神经网络,由于其强大的非线性映射能力,成为解决MIMO系统预测问题的有力工具。然而,BP神经网络自身的缺陷,例如容易陷入局部最小值、收敛速度慢以及对初始权值和阈值敏感等,限制了其应用效果。

为了克服BP神经网络的这些缺点,许多改进算法被提出,其中进化算法因其全局搜索能力而备受关注。蛇群算法 (Snake Optimization Algorithm, SO) 是一种新型的元启发式优化算法,它模拟了蛇捕食猎物的行为,具有较强的全局搜索能力和收敛速度。本文提出将蛇群算法与BP神经网络相结合,构建SO-BP模型,用于解决MIMO系统预测问题。该模型利用蛇群算法优化BP神经网络的权值和阈值,从而提高网络的预测精度和收敛速度。

2. 蛇群算法 (SO)

蛇群算法模拟了蛇在捕食猎物过程中的行为。算法中,每条蛇代表一个潜在的解,通过迭代更新蛇的位置来寻找最优解。算法主要包括以下几个步骤:

  • 初始化: 随机生成一定数量的蛇,每个蛇由其位置向量表示,该向量对应于BP神经网络的权值和阈值。

  • 移动: 每条蛇根据一定的规则移动到新的位置。该规则考虑了蛇与猎物(最优解)的距离以及蛇与其他蛇的距离,以平衡全局搜索和局部搜索能力。

  • 更新: 根据蛇的新位置计算其适应度值(例如,预测误差)。保留适应度值最优的蛇作为当前最优解。

  • 终止条件: 当满足预设的终止条件(例如,迭代次数或精度要求)时,算法终止,返回当前最优解。

SO算法的具体公式和参数设置将在后续章节中详细介绍。

3. BP神经网络

BP神经网络是一种典型的多层前馈神经网络,它通过反向传播算法来调整网络的权值和阈值,从而最小化预测误差。本文采用三层BP神经网络,包括输入层、隐藏层和输出层。输入层节点数等于MIMO系统的输入变量个数,输出层节点数等于MIMO系统的输出变量个数,隐藏层节点数需要根据实际情况进行调整。

4. SO-BP算法

SO-BP算法将蛇群算法用于优化BP神经网络的权值和阈值。具体步骤如下:

  1. 初始化: 随机生成一定数量的蛇,每个蛇的位置向量表示一组BP神经网络的权值和阈值。

  2. 训练: 对每条蛇对应的BP神经网络进行训练,利用训练数据集计算其预测误差,并将误差作为适应度值。

  3. 更新: 根据蛇的适应度值更新蛇的位置,采用SO算法的更新规则。

  4. 迭代: 重复步骤2和3,直到满足预设的终止条件。

  5. 输出: 返回适应度值最小的蛇对应的BP神经网络权值和阈值,作为最优模型。

5. Matlab实现

本文使用Matlab编写SO-BP算法,实现MIMO系统预测。代码包括以下几个模块:

  • SO算法模块: 实现蛇群算法的初始化、移动、更新等步骤。

  • BP神经网络模块: 实现BP神经网络的训练和预测功能。

  • 数据预处理模块: 对MIMO系统的数据进行预处理,例如归一化、标准化等。

  • 结果分析模块: 对预测结果进行分析,计算预测精度等指标。

具体的Matlab代码将在附录中给出。

6. 实验结果与分析

本文采用某化工过程的MIMO系统数据进行实验,验证SO-BP算法的有效性。实验结果表明,与传统的BP神经网络相比,SO-BP算法具有更高的预测精度和更快的收敛速度。具体实验结果和图表分析将在文章中详细呈现。

7. 结论

本文提出了一种基于SO-BP算法的MIMO系统预测模型,该模型利用蛇群算法优化BP神经网络的权值和阈值,有效提高了网络的预测精度和收敛速度。Matlab实现结果验证了该方法的有效性。未来研究将进一步探讨SO算法的参数优化以及与其他优化算法的比较,以提高模型的鲁棒性和泛化能力。

⛳️ 运行结果

🔗 参考文献

[1] 易望远,尹瑞雪,田应权,等.数控铣削能耗预测及切削参数多目标优化研究[J].重庆理工大学学报(自然科学), 2024, 38(3):240-249.DOI:10.3969/j.issn.1674-8425(z).2024.03.026.

[2] 王莲霞,李丽敏,任瑞斌,等.基于STM32和DBO-BP的滑坡预警系统[J].国外电子测量技术, 2023, 42(8):139-146.

[3] 乔贵方,聂新港,付冬梅,等.基于DBO-PSO-BPNN的Stewart平台正运动学求解方法研究[J].仪表技术与传感器, 2023(12):94-98.

[4] 王艳,邱青磊,王钢,等.基于模态—DBOBP算法的阵列天线形变重构方法[C]//2023年全国天线年会论文集(上).2023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
 
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

最小二乘参数辨识共享及答疑-mem_con.m 我编了一个用最小二乘法辨识系统参数的函数,有限定记忆最小二乘递归算法的(辨识量测噪声为白噪声的系统参数),有广义最小二乘算法的(辨识量测噪声为有色噪声的系统参数及参数噪声),递归算法辨识结果正确,但广义最小二乘辨识出来系统参数正确,但噪声参数不正确,大家帮我看看广义最小二乘的算法程序错在何处。我大概说一下广义最小二乘的算法结构,广义最小二乘递推的每一步用两步递推算法,先把噪声参数和模型参数均给个初值,然后第一步先假设噪声参数已知,用最小二乘估计出模型参数,第二步再用最新的模型参数来估计噪声参数,如此循环直到辨识精度达到指定要求或者可用数据用完为止。我的疑问是:辨识模型参数时需要用到噪声参数,我的噪声参数辨识的不对,为何得到的模型参数又是对的,这点让我很纳闷…… 附件中包含模型和最小二乘辨识的函数M文件,其中LSE.mdl为模型文件,mem_con.m为限定记忆最小二乘的源程序,GLS.m为广义最小二乘源程序,u为输入,使用4阶m序列,Y为白噪声作用下的输出,Yv为有色噪声作用下的输出,系统和噪声的模型均为2阶模型,函数文件中有简单的注释,大家很容易看懂,希望看出问题的前辈不吝赐教。在此先谢过了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值