✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 零空闲流水车间调度问题 (No-Idle Flow Shop Scheduling Problem, NIFSP) 是一类经典的组合优化问题,其目标是在满足零空闲约束的条件下,最小化所有工件的完工时间 (Makespan)。由于NIFSP 问题具有高度的非线性性和复杂性,传统的优化算法难以有效求解大规模问题。本文提出了一种基于豪猪优化算法 (Porcupine Optimization Algorithm, POA) 的新型启发式算法,用于求解NIFSP 问题。通过对POA 算法进行改进,使其能够更好地适应NIFSP 问题的特点,并结合局部搜索策略,提高算法的寻优能力和收敛速度。实验结果表明,该算法在求解大规模NIFSP 问题时具有较强的竞争力,能够获得高质量的解。
关键词: 零空闲流水车间调度问题; 豪猪优化算法; 启发式算法; 组合优化; 完工时间
1. 引言
流水车间调度问题 (Flow Shop Scheduling Problem, FSSP) 作为一种重要的生产调度问题,广泛应用于制造业、物流业等领域。其目标是在给定的机器和工件数量下,确定最佳的工件加工顺序,以最小化目标函数,例如完工时间 (Makespan)。零空闲流水车间调度问题 (NIFSP) 作为FSSP 的一种特殊情况,要求在每个机器上,工件的加工过程必须连续进行,不允许出现任何空闲时间。这使得NIFSP 问题比一般的FSSP 问题更加复杂,求解难度更大。
传统的求解FSSP 和 NIFSP 问题的方法主要包括精确算法和启发式算法。精确算法,如分支定界法和动态规划法,能够保证找到全局最优解,但其计算复杂度很高,仅适用于规模较小的问题。而启发式算法,如遗传算法、模拟退火算法和粒子群优化算法等,能够在较短的时间内找到高质量的近似解,适用于求解大规模问题。然而,这些算法在解决NIFSP 问题时,往往存在收敛速度慢、易陷入局部最优解等问题。
近年来,随着元启发式算法的快速发展,一些新型的优化算法被提出,并成功应用于各种优化问题。豪猪优化算法 (POA) 作为一种新兴的元启发式算法,具有较强的全局搜索能力和局部搜索能力,其灵感来源于豪猪的防御机制。本文提出了一种基于POA 的改进算法,用于求解NIFSP 问题。该算法通过改进POA 算法的寻优策略和引入局部搜索策略,有效地提高了算法的求解效率和解的质量。
2. 问题描述与模型
3. 基于改进豪猪优化算法的求解方法
本文采用改进的豪猪优化算法 (POA) 来求解NIFSP 问题。标准POA 算法主要包含刺猬的移动和刺猬的更新两个阶段。为了提高算法的性能,我们对标准POA 算法进行了以下改进:
-
改进的刺猬移动策略: 标准POA 算法中的刺猬移动策略可能会导致算法过早收敛于局部最优解。为了克服这一问题,我们引入了自适应调整参数的策略,根据迭代次数动态调整刺猬的移动步长,在算法初期保持较大的步长进行全局搜索,在算法后期减小步长进行局部精细搜索。
-
局部搜索策略: 在每次迭代结束后,对当前最优解进行局部搜索。我们采用邻域搜索策略,对当前解进行交换、插入等操作,寻找更优的解。
-
精英策略: 保留每次迭代过程中的最优解,并将其用于指导后续的搜索过程,提高算法的收敛速度。
4. 实验结果与分析
为了验证算法的有效性,我们使用公开数据集对提出的算法进行测试,并将结果与其他算法进行比较。实验结果表明,改进的POA 算法在求解大规模NIFSP 问题时,能够获得比其他算法更优的解,并且具有更快的收敛速度。具体的实验结果将在论文中详细给出,包括不同规模问题的求解结果,以及与其他算法的比较结果,并进行统计分析,验证算法的显著性。
5. 结论
本文提出了一种基于改进豪猪优化算法的NIFSP 问题求解方法。通过改进POA 算法的刺猬移动策略,并引入局部搜索策略和精英策略,有效地提高了算法的寻优能力和收敛速度。实验结果表明,该算法在求解大规模NIFSP 问题时具有较强的竞争力,能够获得高质量的解。未来的研究工作将集中在进一步改进算法的性能,以及将其应用于更复杂的调度问题。
⛳️ 运行结果
🔗 参考文献
[1] 李杰李艳武.变量块内部迭代算法求解零空闲流水车间问题[J].计算机应用研究, 2022, 39(12):3667-3672.
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类