【机器人】基于深度强化学习的两足机器人行走Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

两足机器人行走,作为一项极具挑战性的课题,长期以来吸引着机器人学界和人工智能领域的广泛关注。传统的基于模型的控制方法,例如零力矩点(ZMP)控制和线性二次高斯(LQG)控制等,虽然在特定环境下能够实现稳定的行走,但其依赖于精确的动力学模型和环境建模,难以应对复杂和非结构化的环境。近年来,深度强化学习(Deep Reinforcement Learning,DRL)凭借其强大的学习能力和适应性,为解决两足机器人行走问题提供了一种全新的思路,并取得了显著的进展。本文将深入探讨基于深度强化学习的两足机器人行走控制方法,分析其优势、挑战以及未来的发展方向。

深度强化学习的核心思想是通过试错学习来优化控制策略。智能体(Agent)在与环境交互的过程中,不断地尝试不同的动作,并根据收到的奖励信号来调整其策略。在两足机器人行走控制中,机器人充当智能体,环境则包括机器人自身动力学、地面接触以及外部扰动等。奖励函数的设计至关重要,它决定了学习的目标和方向,例如,可以设计奖励函数来鼓励机器人行走速度、步态稳定性以及能量效率等。常见的深度强化学习算法包括深度Q网络(DQN)、深度确定性策略梯度(DDPG)、信任区域策略优化(TRPO)以及近端策略优化(PPO)等。这些算法通过神经网络来逼近策略函数或值函数,并利用反向传播算法来更新网络参数。

相比于传统的控制方法,基于深度强化学习的两足机器人行走控制具有以下几个显著优势:

首先,适应性强。深度强化学习能够学习到复杂的非线性动力学模型,并自动适应不同的地形和扰动。这使得机器人能够在非结构化环境中实现鲁棒的行走,而无需精确的模型建模。传统的控制方法在面对环境变化时通常需要重新设计控制器,而深度强化学习则能够通过持续学习来适应新的环境。

其次,易于实现。深度强化学习算法相对易于实现,只需要定义奖励函数和选择合适的深度学习框架即可。这降低了开发和部署两足机器人行走控制系统的门槛,加快了技术迭代速度。传统的控制方法则需要进行复杂的动力学建模和控制器设计,这需要丰富的专业知识和大量的计算资源。

第三,无需精确的动力学模型。深度强化学习能够直接从数据中学习控制策略,而无需对机器人动力学进行精确建模。这避免了模型误差对控制性能的影响,特别是在机器人结构复杂、参数不确定性大的情况下,这种优势尤为突出。传统的基于模型的控制方法对模型精度要求非常高,模型误差往往会导致控制性能下降甚至系统不稳定。

然而,基于深度强化学习的两足机器人行走控制也面临着一些挑战:

首先,样本效率低。深度强化学习算法通常需要大量的样本数据来训练,这需要耗费大量的计算资源和时间。尤其是在真实的机器人平台上进行训练,成本高昂且存在安全风险。因此,提高样本效率是深度强化学习在机器人控制领域应用的关键问题。

其次,奖励函数设计困难。有效的奖励函数设计能够引导智能体学习到期望的行为,而设计一个合适的奖励函数往往需要大量的经验和技巧。不合适的奖励函数可能会导致学习过程收敛到局部最优解或者出现一些意想不到的行为。

第三,安全性问题。在真实的机器人平台上进行训练存在安全风险,如果控制策略不稳定,可能会导致机器人摔倒或损坏。因此,需要开发安全的训练方法,例如模拟训练、安全约束等。

未来的研究方向可以集中在以下几个方面:

  • 提高样本效率: 探索更有效的强化学习算法,例如模仿学习、迁移学习和元强化学习,以减少训练所需的样本数量。

  • 改进奖励函数设计: 开发自动化或半自动化的奖励函数设计方法,减轻人工设计的工作量。

  • 增强安全性: 研究更安全的训练方法,例如将安全约束集成到强化学习算法中,或者采用安全验证技术。

  • 结合多模态感知: 将视觉、力觉等多模态感知信息融入到强化学习框架中,提高机器人的环境感知能力。

  • 适应复杂地形: 开发能够在复杂地形上稳定行走的控制策略,例如崎岖不平的地面、楼梯等。

总之,基于深度强化学习的两足机器人行走控制技术展现了巨大的潜力,为解决这一长期挑战性问题提供了新的途径。虽然目前仍然存在一些挑战,但随着深度强化学习技术的不断发展和研究人员的持续努力,相信基于深度强化学习的两足机器人行走控制技术将会在未来得到更广泛的应用,推动两足机器人技术的进步,并最终实现更加智能、灵活和鲁棒的机器人行走能力。

📣 部分代码

kd1 = 77.05;                     

kp1 = 457.5;

kd2 = 5;

kp2 = 161;

% kp1 = 361;

% kp2 = 181.5;

% kd1 = 75.8;

% kd2 = 4;

alpha = 10.4 * pi / 180;

parameters = [kp1, kp2, kd1, kd2, alpha]';

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值