✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
数据驱动方法在现代控制系统设计中日益占据主导地位。相较于传统的模型驱动方法依赖于精确的系统模型,数据驱动方法利用从系统运行中收集的大量数据来进行系统识别和控制器设计,从而能够更好地应对系统的不确定性、非线性以及模型参数难以精确获取等挑战。本文将深入探讨数据驱动系统识别工具箱及其在实时数据驱动控制中的应用,重点分析其优势、挑战以及未来的发展方向。
一、 数据驱动系统识别概述
数据驱动系统识别旨在利用系统输入输出数据来构建系统模型,而非依赖于先验的物理知识。其核心思想是利用各种机器学习算法,从数据中提取系统的动力学特性,并构建能够逼近系统行为的模型。常用的方法包括:
-
基于参数的模型识别: 该方法假设系统模型具有特定的结构,例如线性模型或非线性模型,然后利用数据估计模型参数。常用的算法包括最小二乘法、最大似然估计等。其优势在于模型具有明确的物理意义,便于理解和分析。但其前提是需要预先假设模型结构,如果模型结构选择不当,则识别结果可能存在偏差。
-
基于非参数的模型识别: 该方法不假设系统模型的特定结构,而是直接利用数据来逼近系统输入输出映射关系。常用的算法包括神经网络、支持向量机、高斯过程回归等。其优势在于能够处理非线性系统,并且不需要预先假设模型结构。然而,其模型通常缺乏可解释性,且可能存在过拟合问题。
-
基于子空间的方法: 该方法利用系统输入输出数据的子空间结构来识别系统模型。其优势在于计算效率高,并且能够处理噪声数据。然而,其适用范围主要限于线性系统。
选择合适的系统识别方法取决于系统的特性、数据质量以及控制目标。在实时数据驱动控制中,算法的计算效率至关重要,因此需要选择计算复杂度较低的算法。
二、 数据驱动系统识别工具箱
数据驱动系统识别工具箱通常包含一系列用于系统识别和模型验证的算法和工具。一个完善的工具箱应具备以下功能:
-
数据预处理: 包括数据清洗、噪声滤波、数据归一化等,以提高数据质量和识别精度。
-
模型选择和参数估计: 提供多种系统识别算法,并能够根据数据特性自动选择合适的算法和参数。
-
模型验证和评估: 提供多种模型验证指标,例如均方误差、拟合优度等,用于评估模型的精度和泛化能力。
-
模型简化和降维: 对于高维系统,需要进行模型简化和降维,以提高计算效率和降低模型复杂度。
-
实时数据处理和更新: 在实时数据驱动控制中,工具箱需要能够实时处理和更新模型,以适应系统动态变化。
许多现有的工具箱,例如MATLAB System Identification Toolbox,提供了丰富的系统识别算法和工具,但这些工具箱往往侧重于离线系统识别,对于实时数据驱动控制的支持有限。因此,开发专门针对实时应用的、具有高效率和鲁棒性的数据驱动系统识别工具箱至关重要。
三、 实时数据驱动控制
实时数据驱动控制是指利用实时采集的数据来在线更新系统模型并进行控制器设计,从而能够快速响应系统动态变化。其核心思想是将系统识别与控制器设计紧密结合,形成一个闭环反馈系统。
实时数据驱动控制面临诸多挑战:
-
计算效率: 由于需要实时处理和更新模型,算法的计算效率至关重要。
-
数据质量: 实时采集的数据可能存在噪声和异常值,需要进行有效的预处理。
-
鲁棒性: 控制器需要能够应对模型误差和外部干扰。
-
稳定性: 实时更新的模型和控制器需要保证系统的稳定性。
为了克服这些挑战,需要采用高效的算法、鲁棒的控制器设计方法以及有效的模型更新策略。例如,可以采用递增式模型识别方法,逐步更新模型,避免计算量过大;可以采用自适应控制策略,根据模型更新实时调整控制参数;可以采用多模型切换策略,根据数据特性选择合适的模型。
四、 未来发展方向
未来数据驱动系统识别工具箱和实时数据驱动控制的研究方向包括:
-
开发更高效的算法: 针对实时应用,开发计算效率更高的系统识别算法,例如基于稀疏表示的算法、基于压缩感知的算法等。
-
提高模型的鲁棒性和可解释性: 研究如何提高模型的鲁棒性,并增强模型的可解释性,以方便用户理解和分析。
-
融合先验知识: 将先验知识与数据驱动方法相结合,提高模型的精度和泛化能力。
-
开发适用于特定应用场景的工具箱: 针对不同的应用场景,开发专门的工具箱,例如针对工业过程控制的工具箱、针对机器人控制的工具箱等。
-
探索更先进的模型更新策略: 研究更有效的模型更新策略,以提高控制性能和系统稳定性。
总而言之,数据驱动系统识别工具箱在实时数据驱动控制中具有巨大的应用潜力。通过不断改进算法、提高工具箱的功能以及解决实际应用中的挑战,数据驱动方法将会在未来控制系统设计中发挥越来越重要的作用,推动智能化控制技术的发展。 未来研究将集中在提高效率、鲁棒性和可解释性上,以构建更可靠、更有效的实时数据驱动控制系统。
📣 部分代码
clear;
load "data/";
qProfile= [3 2 2 4 1 2 4];
tProfile= [0 0 3 2 20 4 1 2 4 4];
global qSize tSize;
%[totalCost,rProfile]= TWED(qProfile, tProfile);
%TWED_profile= rProfile;
%[minDis,rProfile]= movingWindow(qProfile, tProfile);
conversion=y(:,13);
conversion=conversion.'
qProfile= conversion(190:210);
tProfile= conversion(170:230);
tProfile(30)=1.0;
[totalCost,rProfile,A]= TWED(qProfile, tProfile);
totalCost
TWED_profile= rProfile;
[minDis,rProfile]= movingWindow(qProfile, tProfile);
hold on
plot(qProfile);
plot(tProfile);
plot(TWED_profile);
minDis
hold off
function [totalCost,rProfile,A]= TWED(qProfile, tProfile)
qProfile=horzcat(0,qProfile);
tProfile=horzcat(0,tProfile);
[x,qSize]= size(qProfile);
[x,tSize]= size(tProfile);
A = zeros(tSize,qSize);
DPenalty=0.01;
for i=2:tSize
A(i,1)=0;
end
for i=2:qSize
A(1,i)=Inf;
end
itr=1;
minProfile=[];
minCost=Inf;
for r= 2:tSize-qSize+2
TProfile=tProfile;
for c =0:qSize-2
i= r+c;
j= c+2;
A(i,j)=itr;
itr=itr+1;
if((j==2) || (j==qSize))
dPenalty=0;
else
dPenalty= DPenalty;
end
temp1= A(i-1,j-1)+abs(qProfile(j)-TProfile(i));
temp2= A(i-1,j)+ abs(qProfile(j)-TProfile(i-1))+dPenalty;
if(temp2<temp1)
TProfile(i)=qProfile(j);
temp1= A(i-1,j-1)+abs(qProfile(j)-TProfile(i))+dPenalty;
end
A(i,j)= temp1;
cost=A(i,j);
end
if(minCost>cost)
minCost=cost;
minProfile=TProfile;
end
end
minCost;
minProfile;
j=qSize;
i=tSize;
minCost=Inf;
for c= qSize:tSize
if(minCost>A(c,qSize))
minCost=A(c,qSize);
i=c;
end
end
totalCost=minCost;
rProfile=[];
while(j~=1 & i~=1)
if(A(i-1,j-1)<=A(i-1,j))
rProfile= horzcat(minProfile(i),rProfile);
i=i-1;
j=j-1;
else
i=i-1;
end
end
end
%Moving window method
function [minDis, rProfile]= movingWindow(qProfile,tProfile)
[x,qSize]= size(qProfile);
[x,tSize]= size(tProfile);
minDis= Inf;
index=1;
for i= 0:(tSize-qSize)
dist= 0;
for j = 1:qSize
dist= dist+ abs(qProfile(j)-tProfile(i+j));
end
disp(dist);
if(minDis>dist)
minDis=dist;
index=i+1;
end
end
rProfile= tProfile(index:index+qSize-1);
end
%TWED
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇