【滤波跟踪】基于拓展卡尔曼滤波kalman实现目标滤波跟踪附Matlab代码6

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🎁  私信更多全部代码、Matlab仿真定制

🔥 内容介绍

目标跟踪是计算机视觉、机器人导航、自动驾驶等领域的核心问题之一。其目标是从噪声观测数据中估计目标的状态,如位置、速度等。卡尔曼滤波(KF)作为一种高效的递归估计算法,在解决线性系统状态估计问题上表现出色。然而,现实世界中许多目标运动模型和观测模型都呈现出非线性特性。为了应对这一挑战,扩展卡尔曼滤波(EKF)应运而生,通过对非线性函数进行线性化逼近,将卡尔曼滤波的思想扩展到非线性系统。本文详细探讨了基于扩展卡尔曼滤波(EKF)实现目标滤波跟踪的理论基础、算法流程,并分析了其优缺点及适用场景,同时讨论了EKF在目标跟踪中的局限性及未来发展方向。

1. 引言

在许多实际应用中,我们需要对运动的目标进行持续跟踪和定位,例如,监控系统中的行人跟踪、自动驾驶中的车辆跟踪、导弹防御系统中的目标跟踪等。这些应用都需要准确地估计目标的状态,即使观测数据存在噪声和不确定性。目标跟踪的核心问题在于如何利用不完美的观测数据,通过合适的算法来逼近目标的真实状态。

传统的滤波方法,如均值滤波、中值滤波等,主要侧重于信号的平滑处理,无法有效处理目标运动过程中状态的动态变化。卡尔曼滤波(KF)作为一种强大的递归滤波器,可以根据系统模型和观测数据,估计出最优的目标状态。然而,KF算法要求系统模型和观测模型都是线性的,这在实际应用中往往无法满足。因此,针对非线性系统,扩展卡尔曼滤波(EKF)被提出,它通过对非线性函数进行泰勒展开,并取一阶近似,从而将非线性问题转化为线性问题,以便应用卡尔曼滤波的思想。

本文旨在深入探讨基于扩展卡尔曼滤波(EKF)实现目标滤波跟踪的原理、方法和应用,同时分析其局限性并探讨未来改进的方向。

2. 卡尔曼滤波(KF)的回顾

在深入研究EKF之前,有必要回顾一下卡尔曼滤波的基本原理。卡尔曼滤波是一种递归算法,它使用系统模型和观测数据来估计系统的状态,其核心思想是通过预测和更新两个步骤来不断迭代。

2.1 卡尔曼滤波的系统模型

卡尔曼滤波假设系统可以用以下两个方程来描述:

  • 状态方程(系统模型):

    x<sub>k</sub> = F<sub>k</sub> x<sub>k-1</sub> + B<sub>k</sub> u<sub>k</sub> + w<sub>k</sub>

    其中,x<sub>k</sub> 是k时刻的状态向量,F<sub>k</sub> 是状态转移矩阵,u<sub>k</sub> 是控制向量,B<sub>k</sub> 是控制矩阵,w<sub>k</sub> 是系统噪声,通常假设为均值为0,协方差矩阵为Q<sub>k</sub>的高斯白噪声。

  • 观测方程(观测模型):

    z<sub>k</sub> = H<sub>k</sub> x<sub>k</sub> + v<sub>k</sub>

    其中,z<sub>k</sub> 是k时刻的观测向量,H<sub>k</sub> 是观测矩阵,v<sub>k</sub> 是观测噪声,通常假设为均值为0,协方差矩阵为R<sub>k</sub>的高斯白噪声。

2.2 卡尔曼滤波的算法流程

卡尔曼滤波算法主要包含以下两个步骤:

  • 预测 (Prediction):

    • 状态预测: x̂<sub>k|k-1</sub> = F<sub>k</sub> x̂<sub>k-1|k-1</sub> + B<sub>k</sub> u<sub>k</sub>

    • 协方差预测: P<sub>k|k-1</sub> = F<sub>k</sub> P<sub>k-1|k-1</sub> F<sub>k</sub><sup>T</sup> + Q<sub>k</sub>

  • 更新 (Update):

    • 卡尔曼增益: K<sub>k</sub> = P<sub>k|k-1</sub> H<sub>k</sub><sup>T</sup> (H<sub>k</sub> P<sub>k|k-1</sub> H<sub>k</sub><sup>T</sup> + R<sub>k</sub>)<sup>-1</sup>

    • 状态更新: x̂<sub>k|k</sub> = x̂<sub>k|k-1</sub> + K<sub>k</sub> (z<sub>k</sub> - H<sub>k</sub> x̂<sub>k|k-1</sub>)

    • 协方差更新: P<sub>k|k</sub> = (I - K<sub>k</sub> H<sub>k</sub>) P<sub>k|k-1</sub>

其中,x̂<sub>k|k-1</sub> 表示k时刻基于k-1时刻信息的预测状态,x̂<sub>k|k</sub> 表示k时刻的更新状态,P<sub>k|k-1</sub>表示预测状态的协方差,P<sub>k|k</sub> 表示更新状态的协方差,K<sub>k</sub> 表示卡尔曼增益,它决定了观测信息在状态更新中的权重。

3. 扩展卡尔曼滤波(EKF)

在实际应用中,目标运动模型和观测模型往往是非线性的,无法直接应用卡尔曼滤波。为了解决这一问题,扩展卡尔曼滤波(EKF)被提出。EKF通过对非线性函数进行泰勒展开,并保留一阶项,从而将非线性问题近似为线性问题,然后应用卡尔曼滤波的框架。

3.1 EKF的系统模型

EKF的系统模型可以表示为:

  • 状态方程:

    x<sub>k</sub> = f(x<sub>k-1</sub>, u<sub>k</sub>) + w<sub>k</sub>

    其中,f() 是非线性状态转移函数。

  • 观测方程:

    z<sub>k</sub> = h(x<sub>k</sub>) + v<sub>k</sub>

    其中,h() 是非线性观测函数。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值