✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 全局路径规划是机器人自主导航的关键技术之一,旨在寻找从起始点到目标点的最优或次优可行路径。传统的RRT (Rapidly-exploring Random Tree) 算法因其简单性和概率完备性而被广泛应用,但在复杂环境中存在收敛速度慢、路径质量不高等问题。本文对RRT算法进行了深入分析,并提出一种改进的RRT算法,该算法结合了启发式搜索、平滑优化以及路径修剪等策略,旨在提升路径规划的效率和质量。实验结果表明,改进后的RRT算法在复杂环境中能够更快地找到更短、更平滑的路径,有效地提高了全局路径规划的性能。
关键词: RRT算法,路径规划,全局路径规划,启发式搜索,路径平滑,路径修剪
1. 引言
在机器人技术和自动化领域,路径规划是一项至关重要的任务。它涉及寻找一条从起始点到目标点的可行路径,同时避开障碍物并满足特定的约束条件。全局路径规划作为路径规划的重要组成部分,需要在已知或部分已知的环境中预先计算出一条全局最优或次优的路径,为机器人的后续运动控制提供指导。
传统的全局路径规划算法包括A*算法、Dijkstra算法等,这些算法在静态环境下表现良好,但在处理高维空间或复杂环境时,往往面临计算复杂度高、内存消耗大等问题。RRT算法作为一种基于采样的算法,具有简单、高效、概率完备等优点,适用于解决高维空间和复杂环境下的路径规划问题。然而,原始RRT算法也存在一些不足之处,例如收敛速度慢,生成的路径往往不够平滑,且存在冗余节点和无效分支。
为了克服原始RRT算法的局限性,近年来涌现出大量的改进RRT算法。这些算法通常通过引入启发式信息、路径平滑技术、路径修剪策略等手段,来提升RRT算法的性能。本文将对原始RRT算法进行深入分析,并提出一种改进的RRT算法,旨在提高全局路径规划的效率和质量。
2. RRT算法原理与分析
RRT算法是一种增量式、基于采样的路径规划算法。其核心思想是通过随机采样的方式在空间中构建一棵树,直到树中某个节点与目标点足够接近,则找到一条从起始点到目标点的路径。RRT算法的主要步骤如下:
-
初始化: 从起始点出发,建立初始树,将起始点作为根节点。
-
采样: 在搜索空间中随机采样一个点 𝑥𝑟𝑎𝑛𝑑xrand。
-
最近邻搜索: 在已生成的树中寻找距离 𝑥𝑟𝑎𝑛𝑑xrand 最近的节点 𝑥𝑛𝑒𝑎𝑟xnear。
-
扩展: 从 𝑥𝑛𝑒𝑎𝑟xnear 向 𝑥𝑟𝑎𝑛𝑑xrand 方向扩展一个步长 ΔΔ,生成新的节点 𝑥𝑛𝑒𝑤xnew。
-
碰撞检测: 判断连接 𝑥𝑛𝑒𝑎𝑟xnear 和 𝑥𝑛𝑒𝑤xnew 的路径是否与障碍物发生碰撞。如果发生碰撞,则放弃该节点;否则,将 𝑥𝑛𝑒𝑤xnew 加入到树中,并将 𝑥𝑛𝑒𝑎𝑟xnear 作为其父节点。
-
目标检测: 判断 𝑥𝑛𝑒𝑤xnew 是否与目标点足够接近。如果是,则找到一条路径,算法结束;否则,返回步骤2,继续迭代。
RRT算法的优势在于其概率完备性,即只要算法运行足够长的时间,就一定能够找到一条可行路径。此外,RRT算法的计算复杂度相对较低,适用于解决高维空间和复杂环境下的路径规划问题。
然而,原始RRT算法也存在一些不足:
-
收敛速度慢: RRT算法的随机采样具有盲目性,可能会在一些无效区域进行大量的搜索,导致收敛速度较慢。
-
路径质量不高: RRT算法生成的路径往往不够平滑,存在大量的急转弯,不适合机器人的实际运动控制。
-
冗余节点和无效分支: RRT算法在扩展过程中可能会生成大量的冗余节点和无效分支,影响算法的效率。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇