【Matlab仿真】基于粒子群PSO优化MPC模型预测的车辆横向轨迹跟踪Matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:车辆横向轨迹跟踪是自动驾驶领域的一项关键技术,其目标是精确控制车辆沿着期望路径行驶。模型预测控制(MPC)作为一种先进的控制策略,因其能显式地处理约束和预测未来行为的特点,被广泛应用于车辆轨迹跟踪。然而,传统MPC方法需要仔细调整权重参数,这往往耗时且缺乏效率。本文探讨了一种结合粒子群优化(PSO)算法的MPC方法,以优化车辆横向轨迹跟踪的性能。该方法利用PSO算法自动寻优MPC控制器的权重参数,显著提升了轨迹跟踪的精度和鲁棒性。通过Matlab仿真,验证了所提出的基于PSO优化的MPC控制策略在车辆横向轨迹跟踪任务中的有效性。

关键词:模型预测控制(MPC),粒子群优化(PSO),车辆横向轨迹跟踪,自动驾驶,Matlab仿真

1. 引言

随着人工智能和汽车工业的蓬勃发展,自动驾驶技术日益成熟,并逐步走向实际应用。在自动驾驶的诸多关键技术中,车辆轨迹跟踪尤为重要,它直接关系到车辆行驶的安全性、舒适性和效率。车辆轨迹跟踪的任务是在给定参考路径的情况下,通过控制车辆的方向盘转角或横向加速度,使车辆尽可能精确地沿着期望路径行驶。

模型预测控制(MPC)作为一种先进的控制策略,近年来在车辆控制领域得到了广泛应用。MPC的核心思想是基于车辆的动力学模型预测未来一段时间内的车辆状态,并通过优化算法求解最优控制序列。与传统的PID控制等方法相比,MPC能够显式地处理车辆的约束条件(如最大转向角、最大加速度等),并能根据未来路径的走向进行预测,从而实现更优的控制性能。

然而,MPC控制器的性能很大程度上取决于其权重参数的选择。这些权重参数直接影响着控制目标函数中各项指标(如跟踪误差、控制输入量等)的相对重要性。传统的权重参数调整方法通常依赖于经验和反复试验,过程繁琐且难以找到最优解。

为了解决上述问题,本文提出了一种基于粒子群优化(PSO)算法的MPC控制策略。PSO算法是一种基于群体智能的优化算法,具有结构简单、易于实现、收敛速度快等优点。本文利用PSO算法自动寻优MPC控制器的权重参数,以最小化车辆横向跟踪误差为目标,从而提高轨迹跟踪的精度和鲁棒性。

2. 车辆横向运动模型

为了设计MPC控制器,首先需要建立车辆的横向运动模型。考虑到模型的复杂度和控制精度,本文采用线性二自由度车辆模型,忽略车辆的纵向速度变化,仅考虑横向位移、横摆角速度和前轮转角之间的关系。

该模型可以描述为:

 

ini

x_dot = v * cos(psi) - vy * sin(psi)  
y_dot = v * sin(psi) + vy * cos(psi)  
psi_dot = r  
vy_dot = (Fyf * cos(delta) + Fyr - m * v * r) / m  
r_dot = (lf * Fyf * cos(delta) - lr * Fyr) / Iz  

其中:

  • x, y

     表示车辆的横纵坐标;

  • psi

     表示车辆的横摆角;

  • v

     表示车辆的纵向速度(假设为常数);

  • vy

     表示车辆的横向速度;

  • r

     表示车辆的横摆角速度;

  • delta

     表示前轮转角;

  • lf, lr

     分别表示车辆前轮到重心和后轮到重心的距离;

  • m

     表示车辆质量;

  • Iz

     表示车辆绕z轴的转动惯量;

  • Fyf, Fyr

     分别表示车辆前轮和后轮的侧向力。

为了方便MPC控制器的设计,将上述非线性模型进行线性化。假设车辆在较小的横摆角和滑移角范围内运行,则可以将cos(psi)近似为1,sin(psi)近似为psi,并将侧向力FyfFyr近似为轮胎滑移角的线性函数。线性化后的状态空间模型可以表示为:

 

ini

x_dot = A * x + B * u  
y = C * x  

其中:

  • x = [y, psi, vy, r]

     为状态向量;

  • u = [delta]

     为控制输入;

  • y = [y]

     为输出向量;

  • A, B, C

     为相应的状态空间矩阵。

通过离散化上述连续状态空间模型,可以得到离散状态空间模型,用于MPC控制器的预测。

3. 基于PSO优化的MPC控制器设计

3.1 模型预测控制(MPC)

MPC的核心思想是在每个控制周期内,基于车辆的离散状态空间模型,预测未来一段时间内的车辆状态,并通过优化算法求解最优控制序列。MPC的优化目标通常是最小化车辆的跟踪误差和控制输入量。

MPC的目标函数可以表示为:

 

ini

J = Σ[ (x(k+i|t) - x_ref(k+i|t))^T * Q * (x(k+i|t) - x_ref(k+i|t)) + u(k+i-1|t)^T * R * u(k+i-1|t) ]  

其中:

  • x(k+i|t)

     表示在当前时刻t预测的未来第i个时刻的状态向量;

  • x_ref(k+i|t)

     表示未来第i个时刻的参考状态向量;

  • u(k+i-1|t)

     表示在当前时刻t预测的未来第i-1个时刻的控制输入;

  • Q

     和 R 分别是状态误差权重矩阵和控制输入权重矩阵,均为正定矩阵;

  • Σ 表示从i=1到预测步长N的求和。

MPC还需要考虑车辆的约束条件,例如:

  • 控制输入约束:-delta_max <= delta <= delta_max

  • 状态约束:例如限制车辆的横向位移等。

通过求解上述优化问题,可以得到最优控制序列u(t), u(t+1), ..., u(t+N-1)。然而,MPC只将序列中的第一个控制输入u(t)应用于实际车辆,并在下一个控制周期内重复上述过程,形成闭环控制。

3.2 粒子群优化(PSO)

粒子群优化(PSO)是一种基于群体智能的优化算法,灵感来源于鸟群觅食行为。在PSO中,每个个体被视为一个粒子,粒子在搜索空间中移动,寻找最优解。每个粒子都有自己的位置和速度,并根据自身的最佳位置(pbest)和整个群体中的最佳位置(gbest)来更新自己的位置和速度。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值