✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
数据分类预测是现代科学技术与社会发展中一项至关重要的任务。随着数据规模的爆炸式增长和特征维度的不断提高,传统机器学习方法在处理复杂、高维数据时面临诸多挑战。卷积神经网络(CNN)作为深度学习领域的杰出代表,凭借其强大的特征提取能力,在图像、文本等领域取得了显著成就。然而,CNN模型的性能高度依赖于其内部参数的优化配置,而手动调参过程繁琐且难以达到全局最优。受自然界生物群体智能的启发,黑翅鸢算法(BKA)作为一种新型的群体智能优化算法,在全局搜索能力和收敛速度方面展现出潜在优势。本文旨在提出一种基于黑翅鸢算法优化卷积神经网络(BKA-CNN)的数据多特征分类预测模型。该模型将黑翅鸢算法应用于CNN模型的关键参数优化,以期提升模型的分类精度和泛化能力。通过对多个标准数据集进行实验验证,结果表明BKA-CNN模型相较于未优化的CNN模型以及其他优化算法优化的CNN模型,在多特征分类预测任务中展现出更优越的性能和鲁棒性,为解决高维复杂数据的分类问题提供了一种新的有效途径。
关键词: 卷积神经网络; 黑翅鸢算法; 多特征分类预测; 参数优化; 群体智能; 机器学习
1. 引言
在当今信息爆炸的时代,数据已经渗透到科学研究、工程技术、商业决策和社会生活的方方面面。对这些海量数据进行有效分类和预测,对于发现隐藏在数据背后的规律、支持智能决策以及提升效率具有至关重要的作用。例如,在医学诊断中,准确识别疾病类型;在金融风控中,预测潜在的欺诈行为;在工业生产中,预测设备故障;在环境监测中,预测污染物扩散趋势等,都依赖于高效准确的数据分类预测技术。
传统的机器学习方法,如支持向量机(SVM)、决策树、朴素贝贝叶斯等,在处理低维、结构化数据时取得了不错的成果。然而,随着数据特征维度的不断增加以及数据结构的日益复杂,这些方法在处理高维非线性数据时,往往面临“维度灾难”、局部最优、泛化能力不足等问题。
深度学习的兴起为解决这些挑战提供了新的思路和工具。作为深度学习中最具代表性的模型之一,卷积神经网络(CNN)凭借其独特的卷积层、池化层和全连接层结构,能够自动地从原始数据中学习抽象、高层次的特征表示。CNN在计算机视觉领域的巨大成功证明了其强大的特征提取能力,并逐渐被应用于语音识别、自然语言处理以及各种结构化和非结构化数据的分类预测任务中。然而,CNN模型的性能并非固定不变,其内部的超参数设置,例如卷积核大小、卷积层和池化层的数量、每层的神经元数量、学习率、正则化参数等,对模型的最终性能有着决定性的影响。CNN模型结构的高度复杂性使得人工调参成为一项耗时耗力的任务,且难以保证找到全局最优解。因此,如何有效地对CNN模型参数进行优化,以充分发挥其潜力,成为当前研究的热点问题。
为了克服手动调参的局限性,研究人员将各种优化算法应用于CNN参数的自动搜索和优化。这些算法主要包括梯度下降及其变种(如Adam、RMSprop)、进化算法(如遗传算法、差分进化算法)、群体智能算法(如粒子群优化算法、蚁群算法)等。这些优化算法通过迭代搜索参数空间,寻找能够最小化模型损失函数的参数组合。
近年来,受自然界生物群体协同行为的启发,一系列新型的群体智能优化算法不断涌现。黑翅鸢算法(Black Kite Algorithm, BKA)便是其中一种新提出的元启发式算法。黑翅鸢作为一种掠食性鸟类,在捕食过程中展现出独特的搜索和协作策略。BKA算法通过模拟黑翅鸢的捕食、盘旋、俯冲等行为,构建了一套具有全局搜索和局部开发能力的优化机制。初步研究表明,BKA算法在解决一些标准的优化问题时,表现出较快的收敛速度和较好的全局最优搜索能力。然而,将黑翅鸢算法应用于复杂深度学习模型参数的优化,特别是卷积神经网络的数据多特征分类预测任务,仍然是一个相对新颖且具有挑战性的研究方向。
基于以上背景,本文提出一种基于黑翅鸢算法优化卷积神经网络(BKA-CNN)的数据多特征分类预测模型。本研究旨在利用黑翅鸢算法的全局搜索优势,对CNN模型的关键参数进行自动优化,以提高模型在处理高维、复杂多特征数据分类任务时的预测精度和泛化能力。通过将黑翅鸢算法的搜索过程与CNN模型的训练过程相结合,期望能够克服传统CNN调参的困难,构建一个更加高效和鲁棒的数据分类预测模型。
2. 相关工作
本节将回顾与本文研究相关的几个主要领域的工作,包括卷积神经网络及其在数据分类中的应用、基于优化算法的深度学习模型优化以及黑翅鸢算法。
2.1 卷积神经网络及其在数据分类中的应用
卷积神经网络(CNN)是当前深度学习领域中最成功的模型之一,其核心思想是通过模拟生物视觉系统的感受野机制,利用卷积操作提取输入数据的局部特征。典型的CNN模型通常包括卷积层(Convolutional Layer)、激活函数层(Activation Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)。
- 卷积层:
使用一组可学习的卷积核对输入数据进行滑动窗口式的卷积操作,从而提取局部特征。通过不同的卷积核,可以提取出不同类型的特征。
- 激活函数层:
在卷积操作后引入非线性激活函数(如ReLU、Sigmoid、Tanh),增加模型的非线性表达能力,使其能够学习更复杂的特征映射。
- 池化层:
通过下采样操作(如最大池化、平均池化)减小特征图的空间尺寸,降低计算复杂度,同时提高模型的鲁棒性,使其对输入数据的微小平移和形变不敏感。
- 全连接层:
将经过卷积和池化操作提取到的高层特征展平后连接到全连接层,最终通过Softmax或Sigmoid等输出层进行分类或回归。
最初,CNN主要应用于图像处理领域,例如图像分类、目标检测、图像分割等,并取得了突破性的进展。然而,研究人员逐渐发现,CNN的强大特征提取能力不仅限于图像数据。通过适当的预处理和模型结构调整,CNN也被广泛应用于其他类型的数据分类任务:
- 文本分类:
将文本序列转化为词向量序列或词矩阵,然后利用一维卷积和池化操作提取文本特征。
- 时间序列分类:
将时间序列数据视为一维“图像”,利用一维卷积层捕捉序列中的局部模式和趋势。
- 语音识别:
将语音信号转化为声谱图或梅尔频率倒谱系数(MFCC),然后利用二维CNN进行特征提取和分类。
- 结构化数据分类:
对于表格型数据,可以通过将不同特征视为不同的通道,或采用特定的Embedding技术将离散特征转化为向量,然后利用CNN进行处理。
尽管CNN在数据分类任务中表现出色,但其性能的上限很大程度上取决于模型的结构设计和参数设置。如何根据具体任务和数据特点选择合适的CNN结构和参数,仍然是一个具有挑战性的问题。
2.2 基于优化算法的深度学习模型优化
深度学习模型的训练本质上是一个优化问题,即寻找一组模型参数,使得模型在训练数据上的损失函数最小化。梯度下降及其各种变体(如随机梯度下降SGD、Adam、RMSprop等)是目前训练深度学习模型最常用的优化方法。这些方法通过计算损失函数关于模型参数的梯度,然后沿着梯度的反方向更新参数。然而,基于梯度的优化方法容易陷入局部最优,并且对初始参数和学习率等超参数的选择比较敏感。
为了克服梯度下降的局限性,研究人员尝试将各种元启发式优化算法应用于深度学习模型的参数优化,特别是对模型结构、层数、节点数、学习率、正则化参数等难以通过梯度计算的超参数进行优化。这些算法通过模拟自然界或人类社会的某些行为,以一种全局搜索的方式来寻找最优解。
- 进化算法:
例如遗传算法(GA)、差分进化算法(DE)。这些算法模拟生物进化过程,通过选择、交叉和变异等操作, iteratively 生成新的解集合,并根据适应度函数评估解的优劣,最终找到最优解。
- 群体智能算法:
例如粒子群优化算法(PSO)、蚁群优化算法(ACO)、灰狼优化算法(GWO)等。这些算法模拟鸟群、蚁群、狼群等生物群体的协作行为,通过个体之间的信息交流和相互学习,共同搜索最优解。
这些基于优化算法的深度学习模型优化方法通常采用两种策略:
- 结构搜索(Neural Architecture Search, NAS):
利用优化算法搜索最优的网络结构。
- 超参数优化(Hyperparameter Optimization):
利用优化算法搜索最优的模型超参数。
将优化算法应用于CNN模型的优化,可以有效减轻人工调参的负担,并有机会找到比手动调参更好的参数组合。然而,不同的优化算法具有不同的优缺点,其在解决特定问题时的性能也各不相同。因此,探索新的优化算法并将其应用于CNN模型优化,对于提升模型性能具有重要意义。
2.3 黑翅鸢算法(Black Kite Algorithm, BKA)
黑翅鸢算法(BKA)是一种较新的群体智能优化算法,由Muhammad Yaseen等人在2021年提出。该算法模拟黑翅鸢在捕食过程中的行为模式,主要包括以下几个阶段:
- 搜索(Searching):
黑翅鸢在空中盘旋,以较大的范围搜索潜在的猎物。这对应于算法的全局搜索阶段。
- 定位(Positioning):
一旦发现猎物,黑翅鸢会调整飞行姿态和位置,精确锁定猎物。这对应于算法的局部开发阶段。
- 攻击(Attacking):
黑翅鸢迅速俯冲,捕捉猎物。这对应于算法向最优解方向收敛的过程。
BKA算法通过维护一个黑翅鸢种群,每个黑翅鸢个体代表一个潜在的解决方案。算法在每次迭代中,根据模拟的黑翅鸢行为规则更新个体的位置,并根据适应度函数评估每个个体的优劣。算法通过迭代搜索,不断逼近最优解。
与传统的群体智能算法相比,BKA算法在某些优化问题上展现出较快的收敛速度和较高的寻优精度。这得益于其独特的搜索和攻击策略,能够在全局探索和局部开发之间实现较好的平衡。然而,黑翅鸢算法的应用研究尚处于起步阶段,将其应用于复杂深度学习模型的参数优化,特别是大规模、高维数据的分类预测任务,仍然需要深入的探索和验证。
3. BKA-CNN 模型构建
本节将详细介绍本文提出的基于黑翅鸢算法优化卷积神经网络(BKA-CNN)的数据多特征分类预测模型的构建过程。模型的核心思想是将黑翅鸢算法作为一种超参数优化器,用于自动搜索CNN模型的最佳参数组合,以提高模型在多特征分类任务上的性能。
3.1 BKA-CNN 模型总体框架
BKA-CNN模型的总体框架如图1所示:
[这里可以插入一个图1:BKA-CNN模型总体框架图。图中应包含数据输入、BKA优化器、CNN模型、模型训练、性能评估、参数更新等模块,并用箭头表示数据和信息的流向。]
图1. BKA-CNN模型总体框架
模型的运行流程可以概括如下:
- 数据预处理:
对原始多特征数据进行必要的预处理,包括数据清洗、缺失值处理、特征缩放、独热编码等,使其适应CNN模型的输入要求。
- 初始化黑翅鸢种群:
初始化黑翅鸢种群,每个个体代表CNN模型的一组超参数配置。这些超参数可以包括:
-
卷积层数量
-
每层卷积核数量
-
卷积核大小
-
池化层类型和大小
-
全连接层神经元数量
-
学习率
-
正则化参数(如Dropout率)
-
激活函数类型
等等。
每个黑翅鸢个体的位置(即参数组合)随机初始化在预设的参数搜索空间内。
-
- 构建CNN模型:
根据每个黑翅鸢个体所代表的超参数配置,构建相应的CNN模型。
- 模型训练与评估:
使用训练数据集对构建好的CNN模型进行训练。训练完成后,使用验证数据集对模型的分类性能进行评估。常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数、混淆矩阵等。将模型的性能评估结果作为黑翅鸢个体的适应度值。通常,适应度值越高,代表该参数组合对应的CNN模型性能越好(例如,可以直接使用验证集准确率作为适应度)。
- 黑翅鸢位置更新:
根据黑翅鸢算法的更新规则,结合当前个体的适应度值以及全局最优解和局部最优解的信息,更新每个黑翅鸢个体的位置(即调整CNN模型的超参数配置)。
- 迭代优化:
重复步骤3-5,直到达到预设的最大迭代次数或满足其他终止条件。在迭代过程中,黑翅鸢种群不断向更优的参数空间移动,寻找最佳的CNN超参数组合。
- 最终模型训练与预测:
将黑翅鸢算法搜索到的最优参数组合应用于构建最终的CNN模型,并使用全部训练数据(或训练集和验证集的组合)进行训练。最后,使用独立的测试数据集对最终模型的分类性能进行评估和预测。
3.2 CNN模型结构设计
对于不同的多特征分类任务,CNN模型的具体结构需要根据数据特点进行设计。本文提出的BKA-CNN模型采用一种通用的CNN结构,其具体层数、卷积核数量、大小等由黑翅鸢算法进行优化。典型的CNN模型结构可以包含以下部分:
- 输入层:
接收经过预处理的多特征数据。对于表格型数据,可以将其转换为二维矩阵形式,或者利用特定的Embedding层将不同类型的特征转换为向量形式。对于其他类型的数据,如序列数据,可以直接输入一维或二维卷积层。
- 卷积层:
多个卷积层堆叠,用于提取不同尺度的特征。可以通过BKA优化卷积核数量、大小以及层的数量。
- 激活函数层:
usually跟在卷积层之后,引入非线性。ReLU是常用的激活函数,但也可以通过BKA优化选择其他激活函数。
- 池化层:
跟在卷积层之后,进行下采样,降低特征图维度。可以通过BKA优化池化类型(最大池化、平均池化)和池化窗口大小。
- 展平层(Flatten):
将多维特征图展平为一维向量,以便输入全连接层。
- 全连接层:
接收展平后的特征向量,进行高层次的特征组合和分类。可以通过BKA优化全连接层的数量和每层的神经元数量。
- Dropout层:
可选的正则化层,随机关闭部分神经元,防止过拟合。可以通过BKA优化Dropout率。
- 输出层:
根据分类任务的类别数量,采用具有相应神经元数量的全连接层和Softmax激活函数,输出每个类别的概率。
黑翅鸢算法将在预设的搜索范围内搜索这些结构和超参数的最佳组合。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇