【多智能体】基于分布式模型预测控制DMPC的多智能体点对点轨迹生成附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在各领域的应用日益广泛,如无人机编队、自动驾驶车队、机器人协同操作等。这些应用的核心挑战之一在于如何协调多个智能体的行为,使其在复杂的环境中高效、安全地完成共同任务。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模多智能体系统时面临巨大的计算负担和通信开销。为此,基于分布式模型预测控制(Distributed Model Predictive Control, DMPC)的方法为解决此类问题提供了有前景的思路。本文旨在深入探讨基于DMPC的多智能体点对点轨迹生成技术,分析其核心原理、优势与挑战,并展望未来的研究方向。

关键词: 多智能体系统;分布式模型预测控制;轨迹生成;点对点;协调控制;避障

1. 引言

多智能体系统是由两个或多个具有一定智能能力的个体组成的群体,它们之间相互作用,共同完成个体无法独立完成的任务。在多智能体协同控制中,轨迹生成扮演着至关重要的角色。一条高质量的轨迹不仅需要确保智能体从起始点顺利到达目标点,还需要满足各种实际约束,例如智能体的最大速度、加速度限制,避免与其他智能体发生碰撞,避开障碍物,以及在某些情况下满足通信带宽或延迟限制。

传统的集中式轨迹生成方法通常将所有智能体的状态和控制输入汇集到一个中心控制器中进行优化。这种方法在智能体数量较少、环境相对简单的情况下表现良好。然而,随着智能体数量的增加和环境复杂度的提升,集中式方法的计算复杂度呈指数级增长,难以满足实时性和可扩展性的要求。此外,集中式方法对中心控制器的通信能力和计算能力要求极高,并且存在单点故障的风险。

为了克服集中式方法的缺点,研究者们提出了各种分布式和去中心化的轨迹生成方法。分布式方法允许智能体之间通过局部通信进行协调和决策,每个智能体根据自身信息和与其他智能体交换的信息来规划自己的轨迹。这种方法具有更好的可扩展性、鲁棒性和容错性。分布式模型预测控制(DMPC)作为一种先进的控制策略,近年来在多智能体协同控制领域引起了广泛关注。DMPC将模型预测控制(MPC)的预测和优化思想与分布式控制架构相结合,使得每个智能体能够在一个有限的时间窗口内预测未来的状态,并根据预测结果与其他智能体协调,共同优化各自的控制输入,从而实现全局目标的达成。

本文将重点聚焦于基于DMPC的多智能体点对点轨迹生成,旨在阐述其原理、方法以及在解决多智能体轨迹生成问题中的优势。

2. 基于分布式模型预测控制(DMPC)的多智能体轨迹生成原理

模型预测控制(MPC)是一种基于模型的开环优化策略。在每个控制周期,MPC利用智能体的动力学模型预测未来一段时间内的状态,并通过优化算法计算出使得某个性能指标最优的控制输入序列。然后,将计算出的第一个控制输入应用于智能体,并在下一个控制周期重复该过程。MPC具有处理约束、预测未来的能力,因此特别适用于动态系统控制。

分布式模型预测控制(DMPC)将MPC的思想推广到多智能体系统。在DMPC框架下,每个智能体都拥有一个局部控制器,该控制器基于智能体自身的动力学模型和局部可获取的信息(包括自身状态、目标点、以及与邻居智能体交换的信息)来预测未来一段时间内的行为。每个智能体通过解决一个局部的优化问题来确定自己的最优控制输入序列,该优化问题的目标通常是最小化某个局部成本函数,并满足各种局部和全局约束。

DMPC的核心在于智能体之间的协调机制。由于每个智能体只能获得局部信息,它们需要通过通信与邻居智能体交换信息,例如预测的轨迹、控制输入、或者关于未来行为的意图。通过这些信息的交换,每个智能体能够在其局部优化问题中考虑其他智能体的行为,从而避免冲突并实现协同目标。常见的协调机制包括:

  • 预测交换:

     智能体相互交换其预测的未来轨迹,并在自己的优化问题中将邻居的预测轨迹作为约束或参考。

  • 成本分摊:

     全局的协同目标被分解为多个局部目标,每个智能体负责优化其中的一部分,并通过交换信息协商如何在局部层面实现全局最优。

  • 迭代优化:

     智能体之间通过迭代方式进行优化。在每次迭代中,每个智能体根据上一次迭代中邻居的决策来更新自己的优化问题并求解,直到收敛。

在基于DMPC的多智能体点对点轨迹生成中,每个智能体的局部优化问题通常包含以下几个关键组成部分:

  • 成本函数:

     通常包括到达目标点的成本(例如与目标点的距离平方),轨迹平滑度的成本(例如控制输入的范数或状态变化率的范数),以及避障成本(例如与其他智能体或障碍物的距离的惩罚项)。

  • 动力学约束:

     描述每个智能体的运动规律,可以是简单的运动学模型或更复杂的动力学模型。

  • 状态和控制输入约束:

     例如智能体的最大速度、加速度限制,控制输入的范围限制等。

  • 避障约束:

     要求智能体在规划的轨迹上与其他智能体和障碍物保持安全距离。在DMPC中,避障约束通常通过预测邻居智能体的行为来实现。

  • 协同约束:

     用于实现多智能体之间的协同,例如保持编队构型、按照特定顺序通过某个区域等。

通过在每个控制周期求解上述局部优化问题并执行计算出的第一个控制输入,每个智能体能够动态地调整其轨迹,以应对环境变化和智能体之间的相互作用,最终实现从起始点到目标点的安全、高效、协同的轨迹生成。

3. 基于DMPC的多智能体点对点轨迹生成的优势

与传统的集中式方法相比,基于DMPC的多智能体点对点轨迹生成具有以下显著优势:

  • 可扩展性:

     DMPC的计算负担分散到各个智能体上,每个智能体只需要处理与自身相关的局部信息和优化问题。因此,DMPC在处理大规模多智能体系统时具有更好的可扩展性,计算复杂度不会随智能体数量呈指数级增长。

  • 鲁棒性:

     由于每个智能体独立进行决策,系统对单个智能体的故障或通信中断具有一定的容错能力。即使部分智能体出现问题,其他智能体仍然可以根据可用的信息进行局部优化和协调。

  • 灵活性:

     DMPC框架可以方便地集成各种不同的智能体模型和约束条件。每个智能体可以根据自身的特性和任务需求采用不同的模型和优化目标。

  • 分布式计算:

     DMPC充分利用了多智能体系统的分布式特性,计算资源分布在各个智能体上,降低了对中心计算平台的依赖。

  • 处理动态环境:

     DMPC基于预测,能够预见到未来一段时间内的环境变化和智能体之间的相互作用,并据此调整控制策略,更适用于动态和不确定性环境。

  • 满足实时性要求:

     通过并行计算和局部优化,DMPC能够在较短的时间内得到控制输入,满足实时控制的要求。

4. 基于DMPC的多智能体点对点轨迹生成的挑战

尽管DMPC具有诸多优势,但在实际应用中仍然面临一些挑战:

  • 协调机制的设计:

     设计高效、可靠的智能体之间的协调机制是DMPC的关键。如何选择合适的通信协议、信息交换内容以及协调算法,以保证全局最优性和收敛性,是一个重要的研究方向。

  • 计算复杂度与实时性权衡:

     局部优化问题的求解仍然需要一定的计算资源。如何在保证轨迹质量的同时,降低优化问题的复杂度,满足实时性要求,是DMPC实际应用中需要解决的关键问题。

  • 稳定性分析:

     DMPC是一个基于开环优化的闭环控制策略。分析整个多智能体系统的稳定性,特别是在智能体之间的相互作用下,是一个具有挑战性的理论问题。

  • 信息不确定性和延迟:

     智能体之间通信可能存在延迟、丢包或不准确的信息。如何处理信息不确定性对DMPC性能的影响,提高系统的鲁棒性,是实际应用中需要考虑的问题。

  • 非凸优化问题:

     在处理避障约束等问题时,局部优化问题往往是非凸的,难以保证找到全局最优解。如何设计有效的算法来求解非凸优化问题,或者采用凸化近似方法,是DMPC研究中的难点。

  • 预测模型的准确性:

     DMPC的性能高度依赖于智能体动力学模型的准确性。如果模型存在较大的误差,预测结果将不准确,可能导致轨迹规划失效。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值