作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电磁场的传播和衍射是光学、微波技术、天文学等多个领域的核心问题。传统的波动光学理论,如惠更斯-菲涅耳原理,在描述光波传播方面取得了巨大成功,但对于复杂场分布和非傍轴衍射场景,其计算复杂度和精度往往面临挑战。另一方面,几何光学的光线追迹方法以其直观性和计算效率,广泛应用于系统设计和成像分析,但无法捕捉衍射效应。本文旨在探讨一种结合惠更斯积分传播电磁场与光线追迹的方法,构建一种“矢量射线衍射积分”的数值计算框架,以期更准确、高效地解决复杂电磁场在自由空间或介质中的传播和衍射问题。研究将聚焦于如何利用光线追迹提供的路径和相位信息来计算惠更斯积分中的传播函数,以及如何处理矢量场的偏振态变化。通过对典型衍射问题的数值模拟和结果分析,验证该方法的有效性和潜在优势,并讨论其局限性及未来改进方向。
关键词: 矢量场传播;衍射积分;惠更斯原理;光线追迹;数值计算;偏振
1. 引言
电磁波的传播是自然界中普遍存在的现象,理解和预测电磁场的空间分布对于众多科学技术领域至关重要。波动光学理论基于麦克斯韦方程组,能够全面描述电磁波的行为,包括衍射、干涉等波动效应。其中,惠更斯-菲涅耳原理作为波动光学的一个重要基础,将波前上的每一点视为次级波源,通过叠加这些次级波源产生的球面波来构建新的波前。数学上,这可以表示为惠更斯衍射积分,用于计算场在传播面上的分布 [1]。然而,直接计算惠更斯积分,尤其是在远场或复杂介质中,往往需要对整个波前进行积分,计算量巨大,且容易受到数值震荡的影响。
与波动光学不同,几何光学将光视为沿直线传播的射线,忽略了波动性。光线追迹是几何光学的核心方法,通过追踪射线在光学系统中的路径,可以高效地分析成像质量、畸变等几何光学特性 [2]。其优势在于计算速度快、物理图像直观,但在描述衍射等波动现象时存在固有的局限性。
在实际应用中,我们常常需要处理既有几何光学特性(如光束会聚、发散)又表现出显著衍射效应的场景。例如,激光束在自由空间的传播、通过复杂孔径的衍射、以及在非均匀介质中的传播等。单纯使用波动光学或几何光学都难以全面、准确地描述这些过程。因此,结合两者的优点,发展一种能够同时考虑光线路径和衍射效应的计算方法具有重要的理论和实际意义。
传统的衍射积分计算方法通常假设场分布已知,然后通过数值积分计算传播后的场。这在简单几何形状和傍轴条件下是有效的。然而,对于非傍轴传播、复杂界面或非均匀介质,直接应用惠更斯积分的计算变得异常复杂。同时,大多数衍射积分理论在推导过程中通常忽略了电磁场的矢量性质,即假设场是标量场。然而,在许多实际应用中,如偏振光学、矢量光场调控等,电磁场的矢量性质至关重要,标量近似会导致误差,甚至无法预测现象。因此,发展一种考虑矢量性质的衍射积分计算方法势在必行。
近年来,研究者们一直在探索将几何光学与波动光学相结合的方法。其中一种思路是利用光线追迹来提供积分所需的路径和相位信息 [3, 4]。例如,可以将光线追迹的结果用于构建传播函数,从而简化衍射积分的计算。然而,如何将矢量场的偏振信息有效地纳入到这种结合框架中,以及如何处理非傍轴传播和复杂界面的影响,仍然是需要深入研究的问题。
本文提出一种“矢量射线衍射积分”的数值计算方法,旨在通过有机结合惠更斯积分和矢量光线追迹,实现对复杂电磁场传播和衍射的数值模拟。其核心思想是:利用矢量光线追迹确定从源面到目标面的传播路径和相应的相位延迟,并结合矢量形式的惠更斯原理计算目标面上的场分布。这种方法有望克服传统方法的局限性,提高计算效率和精度,并能自然地处理矢量场的偏振特性。
2. 理论基础
本节将回顾矢量形式的惠更斯原理和矢量光线追迹的基本理论,为后续方法构建奠定基础。
2.1 矢量形式的惠更斯原理
经典的惠更斯原理通常以标量形式给出,用于描述光波的传播。然而,电磁场是矢量场,具有偏振特性。为了准确描述电磁场的传播,需要采用矢量形式的惠更斯原理。
这个积分公式虽然精确,但在实际计算中需要同时知道电场和磁场在曲面上的分布。通常情况下,我们只知道电场或磁场中的一个分量,因此需要进一步简化。在满足边界条件(例如,在理想导体表面电场切向分量为零)或者通过一些近似(例如,基尔霍夫近似),可以将上式简化为仅包含电场或磁场的表达式。
对于一个开放的积分面 SS (例如一个衍射屏的孔径),并且在满足适当的边界条件(如在孔径外场强为零)以及远场或傍轴近似时,矢量形式的惠更斯积分可以近似为 [6]:
E(r)≈ik4π∬SE(r′)eik∣r−r′∣∣r−r′∣cos(θ)dS′
2.2 矢量光线追迹
几何光学中的光线追迹是将光波视为沿着特定路径传播的射线。在均匀介质中,光线沿直线传播;在界面处,根据斯涅尔定律发生折射或反射。矢量光线追迹不仅追踪光线的路径,还考虑了光线的偏振态变化 [7]。
通过矢量光线追迹,我们可以获得从源点(或源面上的点)到目标点(或目标面上的点)的光线路径、传播距离、以及沿路径累积的相位延迟。更重要的是,矢量光线追迹能够提供在目标点处光线携带的电场矢量信息,包括其方向和幅度,考虑了沿路径的衰减和偏振态的演化。
3. 矢量射线衍射积分方法构建
本研究提出的“矢量射线衍射积分”方法的核心思想是,将惠更斯积分中的积分核(包括传播函数和倾斜因子)通过矢量光线追迹的结果来构建。具体而言,我们不再直接对源面上的场进行均匀采样和积分,而是利用从源面上选取的离散点出发的光线追迹结果来指导积分的计算。
方法的具体步骤如下:
3.1 源面离散化和光线发射
3.2 矢量光线追迹
3.3 衍射积分的构建与计算
需要强调的是,这种方法将衍射积分的复杂性转移到了光线追迹过程中。对于简单场景,光线追迹是直接的。对于复杂场景,例如包含多个光学元件或非均匀介质,矢量光线追迹本身可能需要复杂的计算。
3.4 数值实现的考量
数值实现该方法需要考虑几个关键点:
- 源面离散化策略:
如何选择离散点的位置和密度直接影响计算精度和效率。对于变化剧烈的场分布区域,应增加采样密度。
- 光线与目标点的对应:
从源面离散点发出的光线通常不会精确地通过目标面上的预设点。需要采用插值或其他方法将光线追迹结果映射到目标面的网格点上。一种可能的方法是,从源面发射大量光线,然后在目标面上构建一个网格,对于每个网格点,寻找距离其最近的若干条光线,并根据这些光线的贡献进行加权叠加。另一种方法是,从目标面上的每个网格点向源面发射“反向”光线,追迹这些光线回到源面,找到其在源面的起点,然后利用源面的场分布计算贡献。
- 积分区域的确定:
在实际应用中,通常只需要对有限的区域进行积分。光线追迹可以帮助确定哪些源区域对目标点的场有显著贡献,从而限制积分范围。
- 偏振态的精确处理:
矢量光线追迹必须准确计算电场矢量在传播和通过界面时的变化,包括幅度和相位的变化,以及两个正交偏振分量之间的耦合。
- 计算效率:
尽管结合了光线追迹的效率,当需要计算目标面上大量点的场分布时,从每个源点发射光线仍然可能导致巨大的计算量。并行计算和GPU加速技术对于提高效率至关重要。
4. 数值模拟与结果分析
为了验证本文提出的矢量射线衍射积分方法的有效性,可以进行一系列的数值模拟。典型场景包括:
- 平面波通过矩形孔径的衍射:
这是一个经典的衍射问题,存在解析解或成熟的数值解,可以用于验证方法的准确性。通过改变孔径大小、传播距离和入射波的偏振态,比较计算结果与理论值或现有数值方法的差异。
- 通过透镜聚焦的激光束的衍射:
模拟激光束通过透镜后的聚焦过程,考虑透镜的像差和矢量效应。比较不同偏振态入射光束的聚焦特性(如焦点大小、形状和偏振分布)。
- 在非均匀介质中的传播:
模拟电磁波在梯度折射率介质或含有随机散射体的介质中的传播。利用矢量光线追迹计算复杂路径和相位,然后进行衍射积分计算。
通过对这些场景的模拟,可以分析该方法在以下方面的表现:
- 精度:
计算结果与理论值或参考解的吻合程度。通过增加源面离散点数量或优化光线追迹策略来评估精度提升。
- 效率:
与传统衍射积分方法的计算时间比较。分析光线追迹和积分计算各自的计算量。
- 矢量场处理能力:
对不同偏振态入射光束的模拟结果,以及目标面上偏振态分布的预测能力。
- 复杂场景的适用性:
在包含多个光学元件或非均匀介质的场景中方法的适用性。
5. 讨论与展望
本文提出的矢量射线衍射积分方法为解决复杂电磁场传播和衍射问题提供了一种新的思路。它试图将几何光学的路径信息和波动光学的衍射效应有机结合,并考虑了电磁场的矢量性质。
优势:
- 矢量性:
能够自然地处理电磁场的矢量性质,预测偏振态的变化。
- 光线追迹的直观性:
利用光线追迹可以直观地理解能量的传播路径,有助于分析衍射图案的形成机理。
- 潜在的计算效率:
在某些场景下,特别是对于具有明显几何光学特性的光束,通过追迹少量光线可能能够有效地描述主要传播过程,从而降低计算量。
局限性与挑战:
- 光线追迹的局限性:
几何光学是波动光学的近似,当特征尺寸与波长相当时,几何光学近似失效。在强衍射区域,光线追迹本身可能无法准确描述场的传播。
- 积分权重的确定:
如何精确确定每个光线贡献的权重,以及如何处理光线在目标面上的分布问题,仍然需要深入研究。简单的面积加权可能不够准确。
- 计算量的平衡:
虽然光线追迹可以提高效率,但在需要计算目标面上大量点的场分布时,总体的计算量仍然可能很大。
- 非均匀介质中的复杂性:
在非均匀介质中进行准确的矢量光线追迹本身就是一个挑战,尤其是当介质参数变化剧烈时。
未来改进方向:
- 自适应采样和追迹:
根据源面场分布和目标面精度要求,发展自适应的源面离散化和光线发射策略。
- 基于光线束的衍射计算:
将光线视为具有一定横截面积的“光线束”,计算光线束在传播过程中的衍射展宽和形状变化,从而提高计算精度。
- 结合衍射理论与光线追迹:
探索更深入地将几何理论(如渐近展开法)与光线追迹相结合,以更准确地描述光线在非均匀介质或复杂界面附近的衍射效应。
- 并行计算优化:
利用多核CPU和GPU强大的并行计算能力,加速光线追迹和积分计算过程。
6. 结论
本文探讨了一种结合惠更斯积分和矢量光线追迹的矢量射线衍射积分方法,旨在实现复杂电磁场传播和衍射的数值计算。该方法的核心思想是利用矢量光线追迹确定传播路径、相位延迟和偏振演化,并将其用于构建矢量形式惠更斯积分的数值计算。通过数值模拟,可以验证该方法在处理矢量场传播和衍射方面的有效性,并评估其计算效率和精度。尽管该方法仍存在一些挑战,例如如何精确确定积分权重以及如何处理光线追迹在强衍射区域的局限性,但它为研究复杂电磁场在自由空间和介质中的传播提供了一种有前景的途径。未来的研究将聚焦于克服这些局限性,进一步优化计算算法,并将其应用于更广泛的实际问题中,如复杂光学系统的设计和分析、矢量光场调控以及电磁隐身技术等。
⛳️ 运行结果
🔗 参考文献
[1] 高震宇,方伟,宋宝奇,等.基于惠更斯点扩散函数的光谱响应函数仿真[J].光子学报, 2015(10):6.DOI:10.3788/gzxb20154410.1030002.
[2] 杨雨川.高能短脉冲激光相干合成技术研究[D].国防科学技术大学[2025-05-11].DOI:10.7666/d.d202465.
[3] 马宝田.基于轴棱锥的Nd:YAG激光器腔内倍频产生贝塞尔绿光[D].华侨大学,2010.DOI:10.7666/d.d128371.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇