✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在大数据时代,多输入多输出预测任务广泛存在于气象预报、交通流量分析、工业生产监控等诸多领域。传统模型在处理这类复杂问题时,常面临参数难以优化、预测精度不足等困境。而将贝叶斯优化(Bayesian Optimization,BO)与门控循环单元(Gated Recurrent Unit,GRU)相结合形成的 BO-GRU 模型,为多输入多输出预测带来了新的突破方向。
一、多输入多输出预测:意义与挑战
多输入多输出预测旨在通过分析多个相关变量的历史数据,预测多个目标变量的未来趋势。以城市交通系统为例,输入变量可能包含不同路段的历史车流量、时间信息、天气状况等,输出变量则是未来不同时刻各路段的车流量、拥堵指数等。准确的多输入多输出预测,能帮助交通管理部门提前规划调度方案,缓解交通拥堵;在工业生产中,可助力企业优化生产流程,降低运营成本。
但该任务面临诸多挑战。多变量之间存在复杂的非线性关系和相互依赖,且数据往往具有动态变化、噪声干扰等特性。此外,模型的超参数设置对预测结果影响巨大,传统的手动调参或网格搜索等方法,效率低且难以找到全局最优解,因此亟需高效的参数优化策略和强大的预测模型。
2.2 贝叶斯优化
贝叶斯优化是一种基于贝叶斯统计理论的全局优化算法,用于寻找复杂函数的最优解。它通过构建目标函数的代理模型(通常为高斯过程),利用先验信息和已有的观测数据,对目标函数的分布进行建模,从而预测目标函数在未探索区域的取值情况。
具体来说,贝叶斯优化维护一个采集函数(如期望提升、概率提升等),该函数根据代理模型的预测结果,权衡探索(探索未知区域,寻找更优解)和利用(利用已知信息,选择当前最优解),选择下一个进行评估的参数点。通过不断迭代,逐步逼近目标函数的全局最优解。在超参数优化场景中,贝叶斯优化能以较少的评估次数,快速找到模型的最优超参数组合,相比传统方法效率大幅提升。
三、BO-GRU 模型构建与实现
3.1 模型架构设计
在多输入多输出预测任务中,将多个相关的输入变量按时间序列形式输入 GRU 网络。GRU 网络的隐藏层通过重置门和更新门对输入信息进行处理,学习输入变量之间的复杂关系和时间依赖特征。网络的输出层则根据任务需求,输出多个目标变量的预测值。例如,在气象预测任务中,输入温度、湿度、风速等历史数据,输出未来多个时刻的温度、降水量等预测值。
3.2 贝叶斯优化超参数
GRU 模型的超参数(如隐藏层神经元数量、学习率、训练迭代次数等)对预测性能影响显著。利用贝叶斯优化对这些超参数进行调整时,首先定义超参数的搜索空间,例如隐藏层神经元数量在 [10, 100] 之间,学习率在 [0.001, 0.1] 之间等。然后,以 GRU 模型在验证集上的预测误差(如均方误差 MSE)作为目标函数,通过贝叶斯优化算法不断调整超参数,构建代理模型并选择下一个待评估的超参数组合,直至找到使目标函数最小化的最优超参数。
3.3 数据处理与模型训练
对于多输入多输出的原始数据,首先进行清洗,处理缺失值和异常值;接着进行归一化,将数据映射到合适区间,如 [0, 1] 或 [-1, 1],消除量纲差异。然后,将数据划分为训练集、验证集和测试集。在训练过程中,使用训练集对 BO-GRU 模型进行训练,利用贝叶斯优化在验证集上不断调整超参数,优化模型性能。训练完成后,使用测试集评估模型的泛化能力。
⛳️ 运行结果
📣 部分代码
%% 导入数据
%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇