✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对 “双碳” 目标下综合能源系统经济与碳排放协调调度难题,构建经济 - 二氧化碳排放协调最优调度模型。以系统运行成本最小化、二氧化碳排放总量最小化为目标,综合考虑能源转换设备运行约束、多能流平衡等条件,运用智能优化算法求解模型。同时,开展敏感性分析,研究能源价格、碳排放因子等关键参数对调度结果的影响。研究表明,该模型可有效实现经济与碳排放的协调优化,敏感性分析结果为系统优化运行与参数调控提供了重要参考,有助于推动综合能源系统在 “双碳” 背景下的可持续发展。
关键词
双碳目标;综合能源系统;经济调度;二氧化碳排放;协调优化;敏感性分析
一、引言
1.1 研究背景
在全球应对气候变化、积极推动能源转型的大背景下,“碳达峰、碳中和” 目标成为我国能源领域发展的重要战略导向 。综合能源系统通过整合电力、热力、天然气等多种能源形式,实现能源的协同规划、生产、传输与消费,能够显著提高能源利用效率,降低能源消耗 。然而,随着综合能源系统规模不断扩大,其运行过程中的能源消耗与二氧化碳排放问题日益突出。如何在保障系统经济高效运行的同时,有效降低二氧化碳排放,实现经济与环境效益的协调统一,成为当前综合能源系统研究的关键问题 。
1.2 研究现状
目前,国内外学者围绕综合能源系统的调度优化开展了大量研究 。在经济调度方面,众多研究通过优化能源转换设备的运行策略、合理安排能源供应,以降低系统运行成本 。在碳排放约束下的调度研究中,部分学者通过引入碳交易机制、设置碳排放上限等手段,将碳排放纳入调度目标 。但现有研究大多将经济和碳排放目标分开考虑,缺乏对两者协同优化的深入探讨。同时,对于综合能源系统中关键参数变化对调度结果的影响,即敏感性分析方面的研究也相对不足,难以全面为系统优化运行提供指导 。
1.3 研究目的与意义
本研究旨在构建 “双碳” 背景下综合能源系统经济 - 二氧化碳排放协调最优调度模型,通过多目标优化方法实现经济成本与碳排放的平衡,并开展敏感性分析,明确关键参数对调度结果的影响程度 。研究成果将为综合能源系统的规划设计、运行管理提供科学依据,有助于推动综合能源系统在 “双碳” 目标下实现高效、低碳、可持续发展,对促进能源结构优化、减少环境污染具有重要的理论和现实意义 。
二、综合能源系统概述
2.1 综合能源系统结构
综合能源系统是一个复杂的多能耦合系统,主要由电力系统、热力系统、天然气系统等子系统构成 。系统内包含多种能源转换设备,如燃气轮机、热泵、电锅炉、微型燃气轮机等,实现电能、热能、天然气等能源形式之间的相互转换;同时配备电池储能、储热装置、储气罐等储能设备,用于调节能源供需在时间和空间上的不平衡 。各子系统通过能源耦合元件紧密连接,形成一个相互关联、协同运行的能源网络,以满足用户多样化的能源需求 。
2.2 综合能源系统运行特点
综合能源系统具有能源多元化、多能互补、协同优化等显著特点 。不同能源形式之间可以相互替代和补充,提高了能源利用的灵活性和可靠性;通过对多种能源的协同调度,能够实现能源的梯级利用,提升系统整体能源利用效率,降低运行成本 。但与此同时,系统运行受到能源转换效率限制、设备容量约束、能源供需平衡要求以及碳排放政策等多种因素的制约,使得综合能源系统的调度优化问题变得更加复杂 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇