✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在电商业务蓬勃发展、物流需求日益增长的当下,传统单一的配送模式已难以满足时效性和成本控制的双重要求。卡车与无人机协同配送凭借高效、灵活的特点,成为物流行业的新趋势。如何优化协同配送路径,让一辆卡车与两架无人机高效配合,将包裹送至随机分布的客户手中并返回起始点,是亟待解决的问题。遗传算法以其强大的全局搜索能力,为该路径优化问题提供了有效的解决方案。
卡车和无人机协同配送概述
1. 协同配送模式优势
卡车和无人机协同配送融合了卡车装载量大与无人机灵活机动、不受交通限制的优势。卡车可作为移动的配送中心,携带大量包裹在主要道路行驶;两架无人机则从卡车上起飞,快速完成对偏远、交通不便区域客户的配送,极大缩短了配送时间,提升了配送效率。同时,这种模式减少了卡车在复杂街区的行驶里程,降低了燃油消耗和运营成本,实现了资源的优化配置。
2. 路径优化问题特点
该路径优化问题属于复杂的组合优化问题,需综合考虑卡车与无人机的行驶路径、飞行路径,以及两者之间的任务分配和协同调度。由于客户站点随机分布,且要确保每个站点仅被服务一次,同时满足卡车和无人机的续航、载重等约束条件,使得问题的解空间庞大且复杂,传统的求解方法难以快速找到最优解,而遗传算法的全局搜索特性恰好适用于此类问题。
遗传算法原理简介
遗传算法模拟生物进化过程,通过对种群中个体(即问题的潜在解)进行选择、交叉和变异操作,逐步搜索最优解。其基本流程为:首先对问题的解进行编码,生成初始种群;然后根据适应度函数评估每个个体的优劣;接着通过选择操作保留优秀个体;再利用交叉和变异操作生成新个体,不断迭代进化种群,直至满足停止条件,得到近似最优解。
基于遗传算法的路径优化求解步骤
1. 编码方式
采用混合编码策略,将卡车路径与无人机路径进行统一编码。例如,使用整数序列表示路径,假设客户站点编号为 1 - n,起始点编号为 0。一个个体编码可能为 [0, 3, 5, 0, 1, 2, 0, 4, 6, 0],其中从起始点 0 出发,卡车先前往站点 3、5 后返回起始点;第一架无人机从起始点出发前往站点 1、2 后返回;第二架无人机从起始点出发前往站点 4、6 后返回。通过这种编码方式,清晰地表示出卡车和两架无人机的配送路径及任务分配。
2. 适应度函数设计
适应度函数用于衡量个体(路径方案)的优劣。在卡车和无人机协同配送中,以总配送时间或总行驶距离作为适应度函数的主要指标。同时,考虑卡车和无人机的续航限制、载重限制等约束条件,对不满足约束的个体赋予较低的适应度值。例如,适应度函数可设计为:
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇