主辅助服务市场出清模型研究【旋转备用】附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着电力系统的不断发展与转型,辅助服务在保障电力系统安全稳定运行中的作用日益凸显。旋转备用作为一种重要的辅助服务,旨在应对电力系统频率和电压的突发扰动,维持供需平衡,确保电网可靠性。本研究聚焦于主辅助服务市场中的旋转备用出清模型,旨在深入探讨其构建原理、关键要素、优化目标以及在实际应用中面临的挑战与潜在改进方向。研究首先梳理了电力系统辅助服务市场的基本结构与功能,重点阐述了旋转备用的技术特性与市场需求。在此基础上,详细构建了基于优化的旋转备用市场出清模型,包括目标函数、约束条件以及核心变量的设定。进一步,论文分析了影响旋转备用市场出清结果的关键因素,如备用需求预测、可用容量限制、市场参与者报价策略等,并探讨了不同市场机制下出清模型的差异性。最后,对旋转备用市场出清模型未来的发展趋势进行了展望,包括引入不确定性因素、考虑新能源出力特性、以及与其他辅助服务产品的协同出清等。本研究旨在为电力市场运营者、监管机构以及市场参与者提供理论支持和实践参考,促进旋转备用市场的健康发展与高效运行。

关键词: 辅助服务;旋转备用;市场出清;优化模型;电力市场

第一章 引言

1.1 研究背景

近年来,全球电力系统正经历着深刻的变革。可再生能源(如风电、光伏)的快速发展,虽然为能源结构转型提供了新的动力,但也带来了显著的不确定性和波动性。传统电力系统依赖于可控性较强的火电等机组来平衡供需,而新能源发电具有间歇性和随机性,使得电力系统的实时平衡和稳定运行面临严峻挑战。与此同时,负荷侧的需求响应、分布式电源的普及以及电力电子设备的广泛应用,也进一步增加了电力系统的复杂性。

在这样的背景下,辅助服务的重要性被提升到了前所未有的高度。辅助服务是指为维持电力系统安全、稳定、可靠运行以及保障电能质量所提供的除电能量以外的服务。它包括频率调节、电压控制、备用、黑启动等多种形式。其中,备用服务尤为关键,旨在应对电力系统突发故障或负荷、发电预测偏差带来的平衡缺口,保证电网的可靠性。备用又根据响应速度和启动方式的不同,可进一步细分为旋转备用、非旋转备用和调频备用等。旋转备用由于其能够快速响应频率变化、提供惯量支持以及参与一次调频等特点,在电力系统动态稳定中发挥着不可替代的作用。

为了提高辅助服务提供的效率和经济性,电力市场化改革将辅助服务纳入市场化交易范畴已成为全球趋势。通过市场机制发现辅助服务的真实价值,激励市场主体提供高质量的辅助服务,是保障电力系统安全运行和降低运行成本的有效途径。主辅助服务市场作为电力市场的重要组成部分,其核心功能在于通过一定的规则和算法,实现辅助服务产品的有效配置,即市场出清。对旋转备用在主辅助服务市场中的出清模型进行深入研究,具有重要的理论意义和实践价值。

1.2 研究目的与意义

本研究的主要目的在于构建并分析主辅助服务市场中旋转备用的出清模型。具体而言,研究旨在:

  • 阐述电力系统辅助服务市场,特别是旋转备用的基本概念和作用。

  • 构建一个能够反映旋转备用市场交易机制和技术特性的数学优化出清模型。

  • 分析影响旋转备用市场出清结果的关键因素及其相互关系。

  • 探讨不同市场规则和环境下出清模型的特点和适用性。

  • 展望旋转备用市场出清模型未来的发展方向和挑战。

本研究的意义在于:

  • 理论意义:

     深入研究旋转备用市场出清模型,有助于丰富电力市场理论,特别是辅助服务市场理论,为理解市场机制对系统运行的影响提供理论基础。

  • 实践意义:

     本研究构建的出清模型可以为电力市场运营者设计和优化市场规则提供参考,提高市场效率和透明度。同时,模型分析结果可以帮助市场参与者(如发电商、储能电站等)制定更有效的报价策略,提高其在市场中的竞争力。此外,对影响出清结果因素的分析,有助于监管机构评估市场运行状况,识别潜在的市场操纵行为,保障市场公平性。

1.3 研究内容与结构

本研究围绕旋转备用市场出清模型展开,主要内容包括:

  • 第二章:电力系统辅助服务及旋转备用概述。

     本章将介绍电力系统辅助服务的概念、分类和作用,重点阐述旋转备用的技术特性、需求来源以及在电力系统运行中的重要性。

  • 第三章:主辅助服务市场出清模型构建。

     本章将详细介绍旋转备用市场出清模型的构建过程,包括模型的基本假设、目标函数、约束条件(如备用容量约束、机组运行特性约束、系统可靠性约束等)以及模型变量的定义。将采用数学优化的方法来描述出清过程。

  • 第四章:模型分析与关键因素。

     本章将对构建的出清模型进行分析,探讨不同市场机制(如单一价格出清、边际价格出清等)对出清结果的影响。重点分析影响旋转备用市场出清的关键因素,如备用需求量的设定、市场参与者的报价行为、机组的可用容量和技术限制等。

  • 第五章:挑战与展望。

     本章将讨论旋转备用市场出清模型在实际应用中面临的挑战,如不确定性建模、市场操纵风险、与其他辅助服务的协同问题等。并对未来模型的发展方向进行展望,例如考虑新能源出力波动、储能等新型主体的参与、以及更加精细化的备用需求评估等。

  • 第六章:结论。

     对全文进行总结,重申主要研究发现,并指出本研究的贡献与不足,提出未来可进一步研究的方向。

第二章 电力系统辅助服务及旋转备用概述

2.1 电力系统辅助服务概念与分类

电力系统辅助服务(Ancillary Services)是指为保障电力系统安全、稳定、经济、可靠运行,维持电能质量以及为电能量交易创造条件所提供的各项服务。它与电能量服务共同构成了现代电力市场的基本服务体系。辅助服务可以从多个维度进行分类,常见的分类方式包括:

  • 按服务性质分:

    • 频率服务:

       包括一次调频、二次调频(AGC)、调频备用等,旨在维持系统频率在允许范围内波动。

    • 电压服务:

       包括无功功率平衡与控制、电压控制服务等,旨在维持系统电压在规定范围内。

    • 备用服务:

       包括旋转备用、非旋转备用、启动备用等,旨在应对突发事件或预测偏差,保证系统有足够的容量来满足需求。

    • 黑启动服务:

       指在系统大面积停电后,能够启动部分机组,逐步恢复系统供电的服务。

    • 输电阻塞管理服务:

       指为缓解电网阻塞而提供的服务,例如通过启停机组或调整出力等方式。

  • 按响应速度分: 可以分为快速响应服务和慢速响应服务。备用服务通常按照其启动并达到规定出力的时间来划分,例如几秒钟、几分钟或几小时。

  • 按市场参与方式分: 可以通过市场交易获得,也可以由系统运营者直接调度(通常是出于系统安全的考虑)。

2.2 旋转备用的技术特性与作用

旋转备用(Spinning Reserve)是电力系统备用服务中的一种重要形式。其核心技术特性在于:

  • 与系统频率同步运行:

     提供旋转备用的机组必须与电力系统频率同步运行,并且通常处于并网状态。

  • 具备快速响应能力:

     当系统频率或电压发生变化时,提供旋转备用的机组能够迅速增加出力或提供无功功率支持。其响应速度通常在几秒到几分钟级别。

  • 提供惯量支持:

     同步发电机组在并网运行时,其转子的转动惯量能够对系统频率变化产生阻尼作用,抑制频率变化速率(Rate of Change of Frequency, RoCoF)。提供旋转备用的同步机组能够为系统提供宝贵的惯量支持,增强系统对扰动的抵御能力。

  • 参与一次调频:

     许多提供旋转备用的机组同时具备一次调频能力,能够在频率偏离额定值时自动调整出力,参与频率恢复过程。

旋转备用在电力系统中的作用主要体现在:

  • 应对突发故障:

     当一台或多台发电机组或重要输变电设备发生突发故障导致出力或容量损失时,旋转备用能够快速响应,弥补容量缺口,防止系统频率和电压大幅下降。

  • 应对负荷或发电预测偏差:

     短期内负荷或新能源出力预测与实际值存在偏差时,旋转备用可以快速调整出力,维持供需平衡。

  • 提供系统惯量支持:

     在新能源渗透率较高的系统中,同步机组的比例下降,系统惯量减少,频率稳定性变差。具有同步特性的旋转备用机组能够提供额外的惯量,提升系统频率稳定性。

  • 参与一次调频:

     协助系统维持频率在允许范围内波动,提高电能质量。

2.3 旋转备用的需求来源

对旋转备用的需求主要来源于电力系统运行中的不确定性:

  • 发电机组故障:

     这是对旋转备用最主要的需求来源。系统需要足够的备用容量来应对单台最大发电机组或多台机组同时故障的可能性。

  • 输变电设备故障:

     重要输电线路或变压器的故障可能导致电力输送能力受限,需要通过调整发电机出力来维持系统稳定,这可能需要额外的备用容量。

  • 负荷预测误差:

     特别是短期内的负荷波动和预测误差,需要快速响应的备用来填补或吸收。

  • 新能源出力预测误差和波动:

     风电、光伏等新能源出力受天气影响较大,其预测误差和实时波动需要快速响应的备用来平衡。随着新能源规模的扩大,这部分需求越来越重要。

  • 系统运行安全约束:

     为了满足电力系统的N-1安全准则(即在电网任意元件发生单一故障时,系统仍能保持稳定运行),需要配置足够的备用容量。

系统运营者(例如调度中心)根据历史数据、实时系统状态、未来预测以及安全运行准则,对旋转备用需求量进行预测和评估,并在市场中进行采购。

第三章 主辅助服务市场出清模型构建

主辅助服务市场出清的本质是一个优化问题,目标通常是在满足系统辅助服务需求和各种约束条件的前提下,最小化系统运行成本或市场出清成本。对于旋转备用市场,其出清模型旨在确定哪些市场参与者(发电机组、储能等)以什么样的价格和容量提供旋转备用服务,从而满足系统对旋转备用的需求,并确定最终的市场出清价格。

3.1 模型基本假设

在构建旋转备用市场出清模型时,通常会做出一些基本假设:

  • 市场参与者理性且成本最小化/利润最大化:

     假设市场参与者根据自身成本结构和市场规则,以最小化成本或最大化利润为目标进行报价。

  • 报价信息完整且准确:

     假设市场参与者提交的旋转备用可用容量和报价信息是真实有效的。

  • 系统需求给定:

     假设系统运营者已经确定了在特定时段或场景下所需的旋转备用总量。

  • 忽略网络约束(初步模型):

     在构建简化模型时,可能暂时忽略复杂的输电网络约束,只考虑总容量供需平衡。然而,在更精细的模型中,网络约束是必须考虑的。

  • 忽略与其他辅助服务的协同(初步模型):

     为了突出旋转备用,初步模型可能不考虑旋转备用与其他辅助服务(如调频、无功)的联合出清,但实际市场可能采取联合出清机制。

3.2 优化目标

旋转备用市场出清模型的优化目标通常是最小化系统采购旋转备用的总成本。这个成本是根据市场参与者的报价与其提供的备用容量乘积之和来计算的。

图片

在一些市场设计中,可能采用边际价格出清,即所有中标的参与者都按照最高的边际中标价格获得补偿。此时,虽然优化目标仍然是最小化总成本(基于报价),但最终支付的价格是边际价格。

3.3 约束条件

旋转备用市场出清模型需要满足一系列约束条件,以确保出清结果的可行性和系统运行的安全可靠。

图片

图片

  • 备用类型兼容性约束: 在某些市场设计中,不同类型的备用可能具有一定的替代性或互补性。例如,旋转备用和非旋转备用在一定程度上可以相互弥补,但响应速度不同。如果在模型中同时考虑多种备用类型,则需要引入相应的兼容性约束。

  • 系统安全约束(高级模型): 在更复杂的模型中,需要考虑电力系统的物理约束,如输电线路容量限制、节点电压约束等。出清的备用容量配置方案需要保证在备用被调用时,系统仍然能够满足这些安全运行约束。这通常需要将潮流计算或安全约束潮流(Security Constrained Optimal Power Flow, SCOPF)融入出清模型中。

    图片

  • 市场规则相关约束: 市场设计中的具体规则也会影响模型的约束。例如,是否有最小投标容量、是否有联合投标(能量与备用)、是否有惩罚机制等。

3.4 模型变量

旋转备用市场出清模型的主要决策变量是每个市场参与者被采购的旋转备用容量 riri。根据模型的复杂程度,还可能包含其他变量:

  • 二值变量:

     表示参与者是否中标,或者是否启动/停止某台机组。

  • 电能量出力变量:

     如果模型是联合出清(电能量与辅助服务),则需要包含每个机组的电能量出力变量。

  • 备用调用量变量:

     在考虑备用被调用场景的安全约束模型中,需要引入在特定故障或扰动下,各个机组实际被调用的备用量变量。

  • 无功功率变量、电压变量等:

     在考虑电压约束的模型中需要引入。

3.5 模型求解

构建的优化模型通常是一个线性规划(Linear Programming, LP)或混合整数规划(Mixed Integer Programming, MIP)问题。对于LP问题,可以采用单纯形法或内点法等标准优化算法进行求解。对于包含二值变量的MIP问题,则需要采用分支定界法、割平面法等算法进行求解。

模型的求解结果包括:

  • 每个中标参与者提供的旋转备用容量 riri。

  • 市场出清价格(根据市场规则,可能是边际价格)。

  • 如果模型包含其他变量,则还包括其他优化结果。

第四章 模型分析与关键因素

构建的旋转备用市场出清模型能够模拟市场交易过程,并得出出清结果。对模型进行分析,可以深入理解市场运行规律,识别影响出清的关键因素。

4.1 不同市场机制下的出清模型

旋转备用市场可以采用不同的出清机制,常见的包括:

  • Pay-as-Bid (按投标付费):

     中标的参与者按照其各自的报价获得补偿。此时,优化目标函数即为最小化总投标成本。

  • Marginal Pricing (边际价格付费):

     所有中标的参与者都按照边际中标价格获得补偿。边际中标价格通常是由最后一个中标的参与者的报价,或者是为了满足某个约束而需要投入的最高报价来决定的。在数学模型中,边际价格通常对应于某个关键约束的对偶变量(影子价格)。例如,总量需求约束的对偶变量可能反映了增加单位备用需求带来的系统成本增量,即边际价格。尽管支付方式不同,但在理想的市场环境下(参与者真实报价),以最小化总投标成本为目标的优化模型仍然能够找到最优的中标组合。边际定价机制旨在提高市场效率和激励参与者真实报价。

不同的市场机制会影响市场参与者的报价策略,从而间接影响出清结果。边际定价理论上更能激励参与者报出其真实成本,提高市场效率。

4.2 影响旋转备用市场出清的关键因素

对出清模型的分析表明,以下因素对旋转备用市场出清结果产生显著影响:

图片

  • 发电机组运行特性:

     发电机组的最小/最大出力、爬坡速率、启停成本、最小运行/停运时间等技术约束,会影响其提供旋转备用的能力和成本。例如,一台爬坡速率慢的机组可能无法提供快速响应的旋转备用。这些技术约束需要在模型中准确反映。

  • 电能量市场运行状态:

     旋转备用通常是由提供电能量的机组兼职提供的。电能量市场的运行状态(如机组的电能量出力水平)会直接影响其能够提供的备用容量(最大出力减去当前出力)。电能量市场的高价或低价也会影响参与者在备用市场和电能量市场之间的决策权衡。一些市场设计会采用电能量与备用的联合出清,以更好地协调两种服务。

  • 系统安全约束:

     在考虑网络约束的模型中,电网拓扑、输电线路容量、节点电压等物理约束会影响备用容量在不同区域的有效性。即使整体备用容量充足,局部的网络阻塞也可能导致某些区域备用不足或备用无法有效送达。这可能导致区域性的备用价格差异或额外的阻塞管理成本。

  • 市场规则设计:

     市场规则的设定(如报价单元、最小投标容量、惩罚机制、出清周期等)直接影响市场参与者的行为和模型的具体形式,从而影响出清结果。

4.3 模型分析方法

对旋转备用市场出清模型进行分析,可以采用以下方法:

  • 敏感性分析:

     改变模型中的关键参数(如备用需求量、某个参与者的报价或可用容量),观察出清结果(中标容量、出清价格)的变化。这有助于理解不同因素对市场的影响程度。

  • 情景分析:

     设置不同的市场情景(如高负荷、低负荷、新能源大发、机组故障等),运行模型,分析不同情景下的出清结果。这有助于评估市场在不同运行条件下的表现。

  • 比较分析:

     比较不同市场机制、不同规则设计下的出清结果,评估不同机制的优劣。

  • 仿真模拟:

     构建更加动态和复杂的仿真模型,模拟市场参与者的报价博弈、系统的实时运行,以更接近真实的市场环境。

第五章 挑战与展望

旋转备用市场出清模型的构建与应用面临一些挑战,同时也存在许多值得深入研究的展望方向。

5.1 面临的挑战

  • 不确定性建模:

     旋转备用需求和可用容量都受到多种不确定性因素的影响。如何将这些不确定性准确地纳入出清模型中,例如通过场景分析、鲁棒优化或随机优化等方法,是一个重要的挑战。不确定性建模的复杂性会显著增加模型的求解难度。

  • 市场参与者报价行为建模:

     在非完全竞争的市场中,市场参与者可能利用市场力进行策略性报价。准确预测和建模市场参与者的报价行为是困难的,这可能导致模型结果与实际市场运行存在偏差。如何设计市场规则以抑制市场力、激励真实报价,也是一个挑战。

  • 与其他辅助服务的协同:

     旋转备用与其他辅助服务(如调频、无功)之间存在技术上的关联性和市场需求上的竞争性。如何将旋转备用与其他辅助服务进行联合出清,以实现整体系统运行成本的最小化,并处理不同服务之间的技术耦合关系,是一个复杂的优化问题。

  • 新能源和储能等新型主体的参与:

     随着新能源和储能技术的快速发展,它们在提供旋转备用方面的潜力日益显现。然而,这些新型主体的技术特性(如出力波动、充放电限制、响应速度)与传统机组不同,如何在出清模型中准确反映这些特性,并设计合适的市场规则,是需要解决的问题。

  • 网络约束的精确建模:

     在大型电力系统中,精确地将输电网络约束纳入出清模型会显著增加模型的规模和计算复杂度。如何平衡模型的精确度和可求解性,采用合适的降维或分解技术,是实际应用中需要考虑的问题。

  • 实时性和鲁棒性:

     市场出清需要在短时间内完成,并且出清结果需要对系统扰动具有一定的鲁棒性。如何在保证模型求解速度的同时,提高出清结果的可靠性,是一个技术挑战。

5.2 未来展望

基于上述挑战,未来的旋转备用市场出清模型研究可以从以下几个方向展开:

  • 不确定性出清模型:

     深入研究基于场景分析、鲁棒优化、随机优化或风险管理等方法,将备用需求和可用容量的不确定性纳入出清模型,提高出清结果的可靠性。

  • 市场参与者行为建模与市场设计:

     结合博弈论、机器学习等方法,对市场参与者的报价行为进行建模,并研究如何通过市场规则设计(如激励机制、信息披露规则)来引导参与者进行更具竞争性的报价,抑制市场力。

  • 联合辅助服务出清模型:

     构建包含旋转备用在内的多种辅助服务产品的联合出清模型,考虑不同服务之间的技术耦合和经济替代性,实现系统辅助服务的整体优化配置。

  • 新型主体参与的出清模型:

     针对新能源、储能、需求响应等新型市场参与者的技术特性,研究如何将其准确地纳入旋转备用市场出清模型,设计合适的投标方式和结算规则。

  • 基于数据驱动的出清模型:

     利用大数据、人工智能等技术,对历史运行数据进行挖掘分析,更准确地预测备用需求,评估参与者的可用容量,甚至直接学习市场出清规律,构建数据驱动的出清模型。

  • 考虑动态安全约束的出清模型:

     将电力系统的动态特性(如惯量需求、频率响应特性)更精确地纳入出清模型中,确保出清结果不仅满足静态安全约束,还能满足系统动态稳定性要求。

  • 区域备用市场和跨区域协调:

     随着电网互联互通程度的提高,研究区域备用市场的设计和出清,以及跨区域备用市场的协调机制,以提高备用资源的利用效率。

第六章 结论

旋转备用作为电力系统重要的辅助服务,在保障电网安全稳定运行中扮演着关键角色。本研究对主辅助服务市场中的旋转备用出清模型进行了深入探讨,阐述了其基本概念、技术特性、市场机制以及优化模型构建。构建的优化模型旨在最小化旋转备用采购成本,同时满足系统需求和各种技术约束。通过对影响出清结果的关键因素(如备用需求、参与者报价、可用容量、运行特性等)进行分析,揭示了市场运行的内在规律。

本研究的贡献在于系统地梳理了旋转备用市场出清模型的构建过程,并对影响模型结果的因素进行了详细分析,为理解旋转备用市场运行提供了理论框架。然而,实际电力市场环境复杂多变,面临诸多挑战,如不确定性、市场力、新型主体参与等。

未来的研究应进一步深入,将不确定性、市场参与者行为、新型主体特性以及与其他辅助服务的协同等因素纳入出清模型中,构建更加精确、鲁棒和具有前瞻性的旋转备用市场出清模型,以适应电力系统转型发展的需求,促进辅助服务市场的健康发展与高效运行,最终保障电力系统的安全可靠与经济高效。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 蒋凌,潘志,成天乐.含风电电力系统旋转备用的鲁棒优化方法研究[J].电力科学与工程, 2013, 29(4).DOI:10.3969/j.issn.1672-0792.2013.04.001.

[2] 王萌,景志滨,孙兵,等.基于BP神经网络的短期市场出清电价预测[J].中国电力教育, 2011.DOI:CNKI:SUN:ZGDI.0.2011-30-050.

[3] 徐升,王越,唐巍,et al.采用通用生成函数法的自治微网旋转备用充裕性评估[J].电力系统自动化, 2016, 40(21):9.DOI:10.7500/AEPS20160120001.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值