【硕士论文复现】可再生能源发电与电动汽车的协同调度策略研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球对环境保护和可持续能源发展的重视,可再生能源发电与电动汽车的规模不断扩大。然而,可再生能源的间歇性和电动汽车充电行为的不确定性给电力系统的稳定运行带来挑战。本研究深入探讨可再生能源发电与电动汽车的协同调度策略,通过建立精确的数学模型,综合考虑两者的特性及互动关系,运用优化算法求解最优调度方案。经仿真验证,所提协同调度策略能够有效平抑可再生能源发电波动,优化电动汽车充电行为,提升电力系统的可靠性与经济性,为实现能源清洁转型与电力系统高效运行提供有力支撑。

关键词

可再生能源发电;电动汽车;协同调度;优化算法;电力系统

一、引言

1.1 研究背景与意义

在全球能源危机和环境问题日益严峻的背景下,大力发展可再生能源发电成为实现能源可持续发展的关键举措 。太阳能、风能等可再生能源具有清洁、低碳的优势,但受自然条件影响,其发电功率呈现显著的间歇性和波动性 。这给电力系统的供需平衡和稳定运行带来极大挑战,导致弃风、弃光等现象时有发生 。

与此同时,电动汽车(Electric Vehicle, EV)作为一种新型的绿色交通工具,近年来得到了迅猛发展 。随着 EV 保有量的快速增长,其大规模无序充电将对电网造成额外的负荷冲击,增加电网峰谷差,影响电网的安全经济运行 。然而,若能合理引导 EV 的充电行为,将其作为一种灵活的分布式储能资源,与可再生能源发电进行协同调度,则有望实现两者优势互补,提升电力系统的整体性能 。

通过对可再生能源发电与 EV 的协同调度策略进行研究,一方面可充分利用可再生能源,减少对传统化石能源的依赖,降低碳排放,促进能源结构的清洁转型;另一方面,能够优化 EV 的充电行为,缓解其对电网的冲击,提高电网运行的可靠性与经济性 。因此,开展本研究具有重要的现实意义和应用价值 。

1.2 国内外研究现状

在国外,学者们较早开展了关于可再生能源与 EV 协同调度的研究 。文献 [X] 运用随机规划方法,考虑了风电和光伏的不确定性以及 EV 的随机充电需求,建立了含可再生能源和 EV 的电力系统协同优化调度模型,通过算例分析验证了该模型可有效降低系统运行成本 。文献 [Y] 提出一种基于模型预测控制的协同调度策略,实时调整可再生能源发电出力和 EV 的充放电计划,提高了系统对可再生能源的消纳能力 。

国内在该领域的研究也取得了丰硕成果 。文献 [Z] 针对含风电和 EV 的微电网,采用粒子群优化算法求解协同调度模型,实现了微电网的经济运行 。文献 [W] 考虑了 EV 用户的出行行为和充电偏好,建立了计及用户满意度的可再生能源与 EV 协同调度模型,提升了用户参与协同调度的积极性 。

然而,目前的研究仍存在一些不足之处 。部分研究对可再生能源发电和 EV 充电行为的不确定性刻画不够精准,导致调度结果的可靠性受限;一些协同调度策略在实际应用中的可操作性有待提高 。因此,深入研究可再生能源发电与 EV 的协同调度策略,具有广阔的研究空间和迫切的现实需求 。

二、可再生能源发电与电动汽车特性分析

2.1 可再生能源发电特性

2.1.1 太阳能发电特性

太阳能光伏发电的输出功率主要取决于太阳辐照度、环境温度以及光伏电池的特性 。太阳辐照度具有明显的日变化和季节变化规律,在晴朗天气下,白天太阳辐照度较高,光伏发电功率随之增大,通常在中午达到峰值;而在夜间或阴雨天,太阳辐照度极低,光伏发电功率近乎为零 。环境温度对光伏电池的发电效率也有一定影响,随着温度升高,光伏电池的开路电压降低,短路电流略有增加,但总体发电功率会下降 。

2.1.2 风力发电特性

风力发电功率与风速密切相关,其关系可用风力机的功率特性曲线描述 。当风速低于切入风速时,风力机无法启动,发电功率为零;随着风速升高,发电功率逐渐增大,在额定风速时达到额定功率;当风速超过切出风速时,为保护风力机,将采取限速措施,发电功率降为零 。风速具有随机性和间歇性,受气象条件、地形地貌等因素影响,其变化难以准确预测,这使得风力发电功率波动较大,给电力系统的调度运行带来困难 。

2.2 电动汽车特性

2.2.1 电动汽车充电需求

EV 的充电需求与用户的出行行为密切相关 。用户的出行时间、出行距离以及充电习惯等因素决定了 EV 的充电起始时间、充电时长和充电电量 。一般来说,EV 在夜间停车时间较长,此时用户可利用低谷电价时段进行充电,降低充电成本 。然而,由于用户出行行为的多样性和不确定性,EV 的充电需求在时间和空间上呈现出较强的随机性 。

2.2.2 电动汽车充放电特性

EV 的充电过程可视为一个可控的负荷,其充电功率大小取决于充电桩的类型和 EV 电池的状态 。常见的充电桩有交流充电桩和直流充电桩,交流充电桩充电功率相对较小,一般为 3 - 22kW;直流充电桩充电功率较大,可达几十千瓦甚至上百千瓦 。在满足用户出行需求的前提下,EV 还可作为分布式储能装置向电网放电,实现车辆到电网(Vehicle - to - Grid, V2G)功能 。但频繁的充放电会对 EV 电池的寿命产生一定影响,因此在制定协同调度策略时,需综合考虑电池寿命和充放电收益等因素 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值