【一维量子谐振子的概率分布】计算并绘制一维量子和经典谐振子的波函数和概率分布附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文旨在深入探讨一维谐振子在量子力学和经典力学框架下的行为。我们将首先概述量子谐振子和经典谐振子的理论基础,包括它们的哈密顿量、薛定谔方程的解以及经典运动方程。随后,我们将详细阐述如何计算量子谐振子的波函数和概率分布,并与经典谐振子的概率分布进行对比。通过数值计算和图形绘制,我们将直观地展示这两种物理系统在不同能量状态下的特性,并着重分析量子效应在低能量状态下的显著性以及在宏观极限下向经典行为的趋近。

1. 引言

谐振子模型在物理学中占据着举足轻重的地位,其广泛应用于描述各种振动现象,从分子振动到固体中的声子,乃至量子场论中的基本粒子。其重要性不仅在于其普遍适用性,更在于它是一个少数能够精确求解的量子力学模型之一,为我们理解量子现象提供了宝贵的洞察。

在经典力学中,谐振子是一个简单而直观的模型,描述了一个受线性恢复力作用的质点的振动。其运动由牛顿第二定律精确描述,其位置和速度随时间呈周期性变化。然而,当我们将视角转向微观世界时,经典力学失去了其描述能力,量子力学应运而生。

量子力学中的谐振子,即量子谐振子,展现出与经典谐振子截然不同的特性。最引人注目的莫过于能量的量子化,即能量只能取一系列离散值,而非连续值。此外,量子谐振子的位置和动量不能同时被精确确定,这是海森堡不确定性原理的直接体现。这些量子效应在微观尺度上表现得淋漓尽致,但在宏观尺度上,量子谐振子的行为逐渐趋近于经典谐振子,这为量子力学和经典力学之间的桥梁提供了理论依据。

本文将深入探讨一维谐振子在量子和经典两种框架下的理论与计算。我们将通过数学推导和数值模拟,详细描绘量子谐振子的波函数和概率分布,并将其与经典谐振子的概率分布进行对比分析。通过这种对比,我们将更好地理解量子效应的本质以及量子力学与经典力学之间的对应原理。

2. 理论基础

2.1 经典谐振子

图片

图片

2.2 量子谐振子

图片

图片

3. 计算与绘制

为了直观地展示量子和经典谐振子的特性,我们将进行数值计算并绘制它们的波函数和概率分布。

3.1 参数设定

图片

3.2 量子谐振子的波函数和概率分布

图片

图片

3.3 经典谐振子的概率分布

图片

3.4 比较与分析

通过将量子谐振子的概率分布与对应能量的经典谐振子概率分布进行比较,我们可以观察到以下几个重要现象:

量子效应的显著性:
在低能量状态(例如n=0,n=1),量子谐振子的概率分布与经典谐振子存在显著差异。例如,基态量子谐振子的概率分布在中心处达到最大,而经典谐振子在中心处概率最小。这体现了量子力学中粒子的“弥散”特性,即粒子并不是一个具有确定位置的质点,而是以概率分布的形式存在。

节点现象:
量子谐振子的波函数在某些位置会为零,这些点称为节点。节点的存在是量子波动的特征,它意味着在这些位置找到粒子的概率为零。经典谐振子则没有这种节点现象。

趋近经典极限:
随着量子数n的增加,量子谐振子的概率分布会逐渐趋近于经典谐振子的概率分布。在高激发态下,量子谐振子的概率分布在振动范围内的峰值数量增多,并且这些峰值会聚集在经典谐振子概率分布较高的区域(即振动两端)。这表明在宏观极限下,量子力学的预言与经典力学的预言趋于一致,这被称为玻尔对应原理。换句话说,当系统的能量非常高,或者当普朗克常数相对系统尺度而言非常小时,量子效应变得不那么明显,经典物理定律就能够很好地描述系统行为。

4. 结论

本文对一维量子和经典谐振子进行了深入的理论探讨和数值分析。我们详细阐述了两种模型的哈密顿量、能量本征值、波函数和概率分布的计算方法。通过对不同能量状态下的波函数和概率分布的绘制和比较,我们清晰地展示了量子谐振子所特有的量子效应,例如能量量子化、零点能量和概率分布的节点现象。

研究结果表明,在低能量状态下,量子谐振子的行为与经典谐振子截然不同,这强调了量子力学在微观世界中的必要性。然而,随着能量的增加,量子谐振子的概率分布逐渐趋近于经典谐振子的概率分布,完美地诠释了玻尔对应原理。

谐振子模型作为物理学中的基石,其在量子和经典框架下的对比研究为我们理解量子力学的基本原理以及其与经典力学的联系提供了宝贵的范例。未来的研究可以进一步探讨多维谐振子、非谐振子以及在外部场作用下的谐振子模型,从而更全面地揭示量子世界的奥秘。

⛳️ 运行结果

图片

🔗 参考文献

[1] 黄世娟.正电子理论计算及其在分析材料微结构中的应用[D].中国科学技术大学,2015.

[2] 张驰,杜晓辉,孙道恒.基于AGC闭环控制的谐振式压力传感器驱动仿真及接口电路设计[J].电子制作, 2013(7X):3.DOI:CNKI:SUN:DZZZ.0.2013-07-026.

[3] 张树林,厉树忠.基于MATLAB的能级,波函数及几率密度图形的处理[J].  2007.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

在物理学中,一维量子谐振子是一个基础模型,而Matlab是进行相关计算可视化的强大工具。为了参数化编程绘制一维量子谐振子波函数概率分布,推荐参考资料:《Matlab绘制一维谐振子波函数概率分布》。在该参考资料中,你将学习到如何利用Matlab的参数化编程技术来适应不同的计算需求。 参考资源链接:[Matlab绘制一维谐振子波函数概率分布](https://wenku.csdn.net/doc/3ei4ccscig?spm=1055.2569.3001.10343) 参数化编程允许我们定义参数变量,这些变量控制程序的行为。例如,在量子谐振子的问题中,你可以定义势阱的深度、粒子的质量、角频率等参数,将它们作为变量在程序中传递。这样,只要修改这些参数的值,就能轻松地重新计算波函数概率分布,而无需更改程序的核心代码。 使用Matlab进行参数化编程时,你可以创建函数来封装波函数计算绘图过程。例如,你可以创建一个函数,输入势阱深度、质量、频率等参数,输出波函数的数值解概率分布图。这个函数内部可以使用Matlab的数值计算工具箱中的函数,如ode45或fsolve等,来解决薛定谔方程,使用plot函数来绘制结果。 此外,为了确保波函数正确归一化,你需要使用Matlab进行数值积分,以确保波函数的概率密度在整个空间积分后等于1。这可以通过Matlab的integral函数或quad函数来实现。 学会了这些技术后,你将能够灵活地调整参数,观察不同参数下波函数概率分布的变化,从而深入理解量子谐振子的行为。如果你希望进一步探索量子力学Matlab编程的结合,或者需要更多关于编程技巧算法实现的资源,那么《Matlab绘制一维谐振子波函数概率分布》这份资源无疑是你理想的选择。 参考资源链接:[Matlab绘制一维谐振子波函数概率分布](https://wenku.csdn.net/doc/3ei4ccscig?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值