✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
粒子群优化算法(PSO)作为一种经典的群体智能优化算法,通过模拟鸟群觅食行为,在解空间中搜索最优解,在函数优化、工程设计、机器学习等众多领域得到广泛应用 。然而,传统 PSO 存在易陷入局部最优、后期收敛速度慢等问题,尤其是在处理复杂高维优化问题时,其性能表现难以满足实际需求。为克服这些局限性,研究人员不断对 PSO 进行改进和创新,潜力驱动多学习粒子群算法(Potential Driven Multi-Learning Particle Swarm Optimization,PDML-PSO)应运而生。PDML-PSO 通过引入潜力驱动机制和多学习策略,增强粒子的搜索能力和群体多样性,有效提升算法在复杂优化问题中的性能,为解决各类优化难题提供了新的有力工具。
二、PDML-PSO 核心原理
2.1 传统粒子群优化算法回顾
在传统 PSO 中,每个粒子代表问题的一个潜在解,在多维解空间中运动。粒子在每次迭代时,根据自身历史最优位置(Pbest)和群体历史最优位置(Gbest)调整速度和位置。速度更新公式为:
2.2 潜力驱动机制
PDML-PSO 引入潜力驱动机制,重新定义粒子的学习方向和搜索动力。在该机制中,每个粒子的潜力值根据其在解空间中的位置和适应度值进行评估。潜力值反映了粒子探索未知区域的能力和潜力,潜力值越高,说明粒子在当前位置附近发现更优解的可能性越大 。粒子在迭代过程中,不仅向个体最优和全局最优位置学习,还会根据自身潜力值,有一定概率向潜力值较高的粒子学习。通过这种方式,引导粒子在全局范围内更有效地搜索,避免过早陷入局部最优,提高算法的全局搜索能力。
2.3 多学习策略
PDML-PSO 采用多学习策略,丰富粒子的学习方式。除了传统 PSO 中向个体最优和全局最优学习外,还增加了以下学习方式:
- 邻域学习:将粒子群划分为多个邻域,粒子在每次迭代时,会向邻域内的最优粒子学习。邻域学习有助于粒子在局部范围内快速收敛,同时保持群体的多样性,防止粒子过度集中 。
- 历史信息学习:记录粒子在历史迭代过程中的优秀位置和适应度信息,粒子可以从历史信息中学习,借鉴过去成功的搜索经验,避免重复无效的搜索,提高搜索效率 。
- 随机学习:为防止算法陷入局部最优,粒子以一定概率进行随机学习,即在解空间中随机生成新的位置,探索未知区域,增加算法跳出局部最优的机会 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类