✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对环境保护和可持续能源发展的关注度不断提高,实现零碳排放的综合能源系统成为能源领域的重要研究方向。非补燃压缩空气储能(A-CAES)系统作为一种新型储能技术,因其能够有效存储能量、平抑能源波动且具备零碳排放特性,在零碳排放综合能源系统中具有巨大的应用潜力。本文详细阐述了 A-CAES 系统的工作原理、技术特点,深入分析了其与多种能源形式集成的可行性和优势。通过构建考虑 A-CAES 系统的零碳排放综合能源优化调度模型,运用先进的优化算法求解,旨在实现能源的高效利用、系统运行成本的降低以及碳排放的严格控制。研究结果表明,A-CAES 系统的集成显著提升了综合能源系统的灵活性和稳定性,为实现零碳排放目标提供了有力的技术支撑,对推动能源行业的绿色转型具有重要的理论意义和实践价值。
关键词
非补燃压缩空气储能系统;零碳排放;综合能源;优化调度
一、引言
在全球应对气候变化的大背景下,实现能源系统的低碳乃至零碳排放已成为国际社会的共识。随着可再生能源如风能、太阳能等在能源结构中的占比不断增加,能源供应的间歇性和波动性问题愈发突出,严重影响了电力系统的稳定运行和能源供需平衡。储能技术作为解决这一难题的关键手段,受到了广泛关注。非补燃压缩空气储能(A-CAES)系统作为一种新型的物理储能技术,以其独特的优势在零碳排放综合能源系统中展现出巨大的应用潜力。它不仅能够有效存储多余的电能,实现能源的时空转移,还能在发电过程中不依赖化石燃料补燃,真正做到零碳排放,这对于推动能源结构的清洁化转型、保障能源安全以及实现可持续发展目标具有重要意义。目前,针对 A-CAES 系统在零碳排放综合能源优化调度方面的研究尚处于起步阶段,深入探究其系统集成特性、优化调度策略以及对系统性能的影响,对于提升综合能源系统的整体效能和实现零碳排放目标具有迫切的现实需求。
二、非补燃压缩空气储能系统原理与特性
2.1 系统工作原理
非补燃压缩空气储能系统主要由空气压缩装置、空气存储装置、储热装置和膨胀发电装置等部分组成。在储能阶段,利用电网低谷时段或可再生能源发电过剩时的电能驱动压缩机,将空气逐级压缩至高压状态。在压缩过程中,空气温度急剧升高,产生大量热能,通过热交换器将这些热能存储到储热装置中,被压缩的高压空气则存储于地下盐穴、废弃矿井等大容量储气空间中,完成电能到空气压力势能和热能的转换存储。在释能发电阶段,高压空气从储气装置中释放出来,首先进入热交换器,吸收储热装置中存储的热能,温度升高后进入膨胀机做功,带动发电机发电,实现空气压力势能和热能向电能的转换。与传统补燃式压缩空气储能系统不同,A-CAES 系统在发电过程中不额外燃烧化石燃料,仅依靠存储的空气势能和热能进行发电,从而实现了全过程的零碳排放。
2.2 技术特性分析
- 环境友好性
:A-CAES 系统的显著优势在于其零碳排放特性,避免了传统补燃式储能系统因燃烧化石燃料而产生的二氧化碳、氮氧化物等污染物排放,符合全球应对气候变化和实现可持续能源发展的要求,对于改善生态环境、推动绿色能源转型具有重要意义。
- 储能容量大
:借助地下盐穴、废弃矿井等天然或人工形成的大容量储气空间,A-CAES 系统能够存储大量的压缩空气,储能容量可根据储气空间的大小进行灵活调整,适用于大规模能源存储场景,为平衡能源供需、保障电力系统稳定运行提供了可靠的储能解决方案。
- 循环寿命长
:系统中的主要设备如压缩机、膨胀机等,在正常运行和维护条件下,具有较长的使用寿命。相较于一些化学储能技术,A-CAES 系统的循环寿命受充放电次数影响较小,可实现频繁的充放电循环,在长期的能源存储和调度应用中具有较高的可靠性和经济性。
- 响应速度较快
:从储能状态切换到释能发电状态,A-CAES 系统能够在较短时间内完成启动和功率输出调整,具备较快的响应速度,可快速应对电力系统中的负荷变化和突发情况,为电网提供有效的调峰、调频和备用电源支持,增强了电力系统的稳定性和可靠性。
- 能量转换效率适中
:尽管目前 A-CAES 系统的能量转换效率相较于部分先进的储能技术仍有一定提升空间,一般在 50%-70% 之间,但随着材料科学、热管理技术和系统优化控制等方面的不断进步,其能量转换效率正逐步提高。同时,通过与其他能源系统的协同优化运行,可进一步提升整体能源利用效率。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇