【船舶尾流检测】基于稀疏正则化的海面SAR图像中船舶尾流检测方法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在海洋监测、海事安全与海洋权益维护领域,船舶尾流作为船舶航行的 “动态轨迹印记”,其精准检测对船舶跟踪、航迹反演、吨位估算等任务具有重要意义。合成孔径雷达(SAR)凭借 “全天时、全天候、高分辨率” 的成像优势,成为海面船舶尾流监测的核心技术手段。然而,海面 SAR 图像中船舶尾流面临 “强背景干扰(海浪杂波、海杂波)、尾流形态多样(窄 V 型、宽 V 型、湍流尾流)、信号稀疏微弱(尾流像素占比 < 5%)” 等检测难题,传统方法(如阈值分割、边缘检测)易出现 “漏检(弱尾流信号被淹没)、误检(海浪杂波被误判)” 等问题。基于稀疏正则化的检测方法,通过 “稀疏表征突出尾流微弱信号、正则化抑制背景干扰” 的双重机制,可实现复杂海面背景下船舶尾流的高精度检测。本文将从海面 SAR 图像船舶尾流特性、稀疏正则化理论基础、检测方法实现流程到性能验证,全面解析该方法如何突破传统局限,为海面 SAR 图像船舶尾流检测提供科学解决方案。

核心背景:海面 SAR 图像船舶尾流检测的痛点与稀疏正则化的适配价值

要理解稀疏正则化在船舶尾流检测中的应用必要性,需先明确海面 SAR 图像船舶尾流的独特特性与传统检测方法的局限,以及稀疏正则化在解决这些痛点中的优势,这是方法设计的根本依据。

(一)海面 SAR 图像船舶尾流的特性与检测难点

海面 SAR 图像中,船舶尾流的成像特性受 “船舶运动状态、海面环境、SAR 成像参数” 共同影响,导致检测任务面临三大核心挑战:

  1. 尾流特性
  • 信号稀疏微弱:船舶尾流由 “窄 V 型尾流(船舶航迹两侧,宽度 0.5-2km,长度 5-20km)、湍流尾流(船舶后方,呈扩散状)” 组成,在 SAR 图像中尾流像素占比通常 < 5%,且灰度值与周围海浪杂波差异小(灰度差 < 10,8 位图像),信号信噪比(SNR)普遍低于 3dB,易被背景淹没;
  • 形态多样性与动态性:尾流形态随船舶速度(低速船舶尾流扩散慢,高速船舶尾流呈窄 V 型)、海况(高海况下海浪破碎导致尾流边界模糊)变化,且尾流会随时间逐渐消散(消散时间 5-30 分钟),传统固定模板匹配方法难以适配;
  • 强背景干扰:海面 SAR 图像背景包含 “海浪杂波(周期性纹理,灰度波动幅度 15-30)、岸线 clutter(近岸区域,灰度值高且不均匀)、大气扰动(如云层阴影,灰度骤降)”,这些干扰与尾流信号在频域、空域特征上高度重叠,传统方法难以有效分离。
  1. 传统检测方法的局限
  • 阈值分割法:基于尾流与背景的灰度差异设置阈值,但因尾流信号微弱,阈值过高导致漏检(弱尾流被判定为背景),阈值过低导致误检(海浪杂波被判定为尾流),在高海况图像中检测准确率 < 60%;
  • 边缘检测法(如 Canny 算子):通过提取图像边缘识别尾流边界,但海浪杂波的强边缘会掩盖尾流弱边缘,导致尾流边缘断裂,无法形成完整尾流轮廓;
  • 频域滤波法:在频域抑制海浪杂波的周期性成分,但尾流信号的频域特征与海浪杂波部分重叠,滤波后易丢失尾流细节,且对湍流尾流(无明显周期性)检测效果差。

(二)稀疏正则化的适配价值

稀疏正则化通过 “假设尾流信号在特定基下具有稀疏性(仅少数系数非零)、正则化项约束背景干扰”,恰好针对船舶尾流检测的三大痛点,其适配价值体现在三个维度:

  1. 突出稀疏微弱尾流信号:尾流在 “小波基、曲波基” 等稀疏基下,仅少数系数对应尾流的边缘、纹理特征,稀疏正则化可通过优化目标函数,强制保留这些非零系数,放大尾流信号,即使 SNR=2dB 的弱尾流也能被有效提取;
  1. 抑制背景干扰:海浪杂波、岸线 clutter 等背景在稀疏基下表现为 “非稀疏分布”(大量系数非零),正则化项(如 L1 正则)可抑制这些背景系数,降低其对尾流检测的干扰,背景抑制率可达 70% 以上;
  1. 适配尾流形态多样性:稀疏正则化无需预设尾流模板,通过数据驱动的稀疏表征,可自适应匹配不同形态尾流(窄 V 型、湍流尾流)的特征,避免传统模板匹配的形态适配局限。

⛳️ 运行结果

📣 部分代码

inv.problem solutions for each 45 degrees intervals

radonMergedImage = [];

radonMergedImageNormalized = [];

numRotate = 180/thetaRotate;

for rotation = 1:numRotate

    thetaInt2 = thetaInt + thetaRotate*(rotation-1);

    theta = thetaInt2;

    A  = @(x) radonT(x,theta);

    AH = @(x) radon(x,theta);

    image_GMC = GMCImage(:, :, rotation);

    [Rver, xp] = AH(image_GMC);%

    maxu = max(max(Rver(20:end-20,20:end-20))); %                   % Normalize Radon Image ignoring side effects

    Rver = min(1,max(0,Rver/maxu));

    radonMergedImage = [radonMergedImage Rver];

end

% Remove overlapping samples

if numRotate == 4

    Rver = [radonMergedImage(:, 1:182) radonMergedImage(:, 184:363) radonMergedImage(:, 365:544) radonMergedImage(:, 546:end)];

elseif numRotate == 2

    Rver = [radonMergedImage(:, 1:363) radonMergedImage(:, 365:end)];

elseif numRotate == 1

    Rver = radonMergedImage;

end

🔗 参考文献

 [1] O Karakus, I Rizaev, and A Achim. "Ship Wake Detection in SAR Images    via Sparse Regularisation."   IEEE Transactions on Geoscience and Remote Sensing, 2020.

[2] O Karakus, and A Achim. "Ship Wake Detection in X-band SAR Images  Using Sparse GMC Regularization."  IEEE ICASSP 2019.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值