大模型入门指南:基本技术原理与应用


有人说,最近我们都患上了大模型焦虑症。

随着计算能力的提升和数据量的增加,深度学习领域的大型神经网络模型(Big Model)在各种任务上取得了显著的性能提升,包括计算机视觉、自然语言处理、语音识别等。本文带着大家初步了解一下大模型的基本技术原理,包括深度神经网络、激活函数、损失函数、优化算法、正则化和模型结构等。

1. 深度神经网络

大模型通常采用深度神经网络作为基本结构。深度神经网络由多个层组成,每一层包含若干神经元。神经元之间通过权重连接,这些权重参数在训练过程中不断调整,以学习到输入数据的特征表示。随着网络层数的增加,模型可以学习到更抽象、更高层次的特征,从而提高模型的性能。

2. 激活函数

神经网络中的激活函数用于引入非线性,使得模型能够学习到复杂的特征和表示。激活函数将神经元的线性输出转换为非线性输出,增强模型的表达能力。常见的激活函数包括:

  • ReLU(Rectified Linear Unit):ReLU是一种简单且高效的激活函数,其输出为max(0, x)。ReLU在正数区间内保持线性,而在负数区间内输出为0,这有助于缓解梯度消失问题。
  • Sigmoid:Sigmoid函数将输入值映射到0和1之间,具有平滑的特性。然而,Sigmoid函数在输入值较大或较小时容易出现梯度消失问题。
  • Tanh:Tanh函数将输入值映射到-1和1之间,具有类似Sigmoid的平滑特性,但相较于Sigmoid具有更宽的输出范围。

3. 损失函数

损失函数用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆业聪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值