【Feature map visualization】卷积神经网络如何可视化特征图?—详细记录-函数可直接调用

 前言:

  • 嘿~你需要知道,你的特征图在哪里!
  • 该教程是从知晓特征图的位置进行特征图查看!
  • 至于特征图在哪,建议Debug跟踪一下x的序列!(或者后续我看看怎么表述哈哈哈)

目录

1 特征图可视化模板

2 注意事项

⚪特征图的输入要求[B,H,W,C]

⚪特征图的维度不是256-降维

⚪f1 = f1.cpu().detach().numpy()


1 特征图可视化模板

  • 声明:import matplotlib.pyplot as plt
  • 使用方式:已经写成函数啦,直接用就行,嘿嘿!
  • 语句也都备注好啦~
import matplotlib.pyplot as plt

# 这里的输入假定的是 [B,H,W,C] 自行确认!关于如何修改,写在后面啦~
def Show_Feature(feature_map):
    # 1 将传入的特征图给到f1,os:单纯为了好记,可以直接用feature_map
    f1= feature_map  

    # 2 确认特征图的shape.[B,H,W,C]
    print(f1.shape)      

    # 3 预期希望的特征图shape [B,C,H,W]
    #   明显特征图shape是[B,H,W,C],利用permute进行调整
    f1 = f1.permute(0,3, 1, 2)

    # 4 确认特征图的shape [B,C,H,W]
    print(f1.shape)

    # 5 特征图向量从cuda转换到cpu,numpy格式
    #   自行检查特征向量位置,亦可根据报错进行修改
    #   目的 torch.Size([B,C,H,W]) 转换成 (B,C,H,W)
    #   可尝试  f1.cpu().numpy()
    f1 = f1.cpu().detach().numpy()

    # 6 确认特征图的shape (B,C,H,W)
    print(f1.shape)    
  
    # 7 去除B (C,H,W)
    f1 = f1.squeeze(0)

    # 8 确认特征图的shape (C,H,W)
    print(f1.shape)

    # 9 开始规范作图
    # 特征图的数量,就是维度啦,图像通常256维,超过的需要降维!
    f1_map_num = f1.shape[0]
    # 图像行显示数量
    row_num = 16 
    # 绘制图像
    plt.figure()
    #通过遍历的方式,将通道的tensor拿出
    for index in range(1, f1_map_num + 1):
        plt.subplot(row_num, row_num, index)
        plt.imshow(f1[index - 1], cmap='gray')      
        plt.axis('off')
        plt.imsave( 'feature_map_save/'+str(index) + ".png", f1[index - 1])            
    plt.show()
    return 0

# 特征图位置直接调用!x:[B,H,W,C]
Show_Feature(x)
  •  os:以上代码主要为了详细说明,查看print语句可自行删除。

2 注意事项

实际上,看代码中的解读就很容易发现一些注意点!

⚪特征图的输入要求[B,H,W,C]

有时后中间特征会以[B,HW相关变动,C],也就是没有H,W清晰的分开,此时,需要追寻中间数据是怎么得到的,还原一下!

  • 原 x[1,3,384,384]
  • 现 x[1,9216,256]
  • 通道数3------256
  • 384,384-----9216
  • dubug可以发现9216 是图像降采样4x后 96*96=926
  • 分析完reshape就行啦
x = x.reshape(1,96,96,256) 
Show_Feature(x)

⚪特征图的维度不是256-降维

  • 原 x[1,3,384,384]
  • 现 x[1,144,512]
  • 通道数3------512
  • 384,384-----144
  • dubug可以发现144 是图像降采样后 12*12=144
  • 降维+ reshape 
  • 注意:输入输出要求格式,以及代码语句!
# 降维放在类self.xxx的位置
# 注意前两项就是维度 希望512变成256
self.fe_rn =nn.Conv2d(512, 256,kernel_size=3,stride=1,padding=1,bias=False,)

# reshape [1,144,512]
x = x.reshape(1,12,12,512)
# 降维的格式,做点交换
x = x.permute(0,3,1,2) 
# 降维
x = self.fe_rn(x)
# 特征可视化格式,做点交换
x = x.permute(0,2,3,1)
Show_Feature(x)

⚪f1 = f1.cpu().detach().numpy()

实际上就是涉及numpy和tensor的转换问题:

[推荐学习]TypeError: can‘t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory..._将tensor从cuda转为cpu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MengYa_DreamZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值