前言:
- 嘿~你需要知道,你的特征图在哪里!
- 该教程是从知晓特征图的位置进行特征图查看!
- 至于特征图在哪,建议Debug跟踪一下x的序列!(或者后续我看看怎么表述哈哈哈)
目录
⚪f1 = f1.cpu().detach().numpy()
1 特征图可视化模板
- 声明:import matplotlib.pyplot as plt
- 使用方式:已经写成函数啦,直接用就行,嘿嘿!
- 语句也都备注好啦~
import matplotlib.pyplot as plt
# 这里的输入假定的是 [B,H,W,C] 自行确认!关于如何修改,写在后面啦~
def Show_Feature(feature_map):
# 1 将传入的特征图给到f1,os:单纯为了好记,可以直接用feature_map
f1= feature_map
# 2 确认特征图的shape.[B,H,W,C]
print(f1.shape)
# 3 预期希望的特征图shape [B,C,H,W]
# 明显特征图shape是[B,H,W,C],利用permute进行调整
f1 = f1.permute(0,3, 1, 2)
# 4 确认特征图的shape [B,C,H,W]
print(f1.shape)
# 5 特征图向量从cuda转换到cpu,numpy格式
# 自行检查特征向量位置,亦可根据报错进行修改
# 目的 torch.Size([B,C,H,W]) 转换成 (B,C,H,W)
# 可尝试 f1.cpu().numpy()
f1 = f1.cpu().detach().numpy()
# 6 确认特征图的shape (B,C,H,W)
print(f1.shape)
# 7 去除B (C,H,W)
f1 = f1.squeeze(0)
# 8 确认特征图的shape (C,H,W)
print(f1.shape)
# 9 开始规范作图
# 特征图的数量,就是维度啦,图像通常256维,超过的需要降维!
f1_map_num = f1.shape[0]
# 图像行显示数量
row_num = 16
# 绘制图像
plt.figure()
#通过遍历的方式,将通道的tensor拿出
for index in range(1, f1_map_num + 1):
plt.subplot(row_num, row_num, index)
plt.imshow(f1[index - 1], cmap='gray')
plt.axis('off')
plt.imsave( 'feature_map_save/'+str(index) + ".png", f1[index - 1])
plt.show()
return 0
# 特征图位置直接调用!x:[B,H,W,C]
Show_Feature(x)
- os:以上代码主要为了详细说明,查看print语句可自行删除。
2 注意事项
实际上,看代码中的解读就很容易发现一些注意点!
⚪特征图的输入要求[B,H,W,C]
有时后中间特征会以[B,HW相关变动,C],也就是没有H,W清晰的分开,此时,需要追寻中间数据是怎么得到的,还原一下!
- 原 x[1,3,384,384]
- 现 x[1,9216,256]
- 通道数3------256
- 384,384-----9216
- dubug可以发现9216 是图像降采样4x后 96*96=926
- 分析完reshape就行啦
x = x.reshape(1,96,96,256)
Show_Feature(x)
⚪特征图的维度不是256-降维
- 原 x[1,3,384,384]
- 现 x[1,144,512]
- 通道数3------512
- 384,384-----144
- dubug可以发现144 是图像降采样后 12*12=144
- 降维+ reshape
- 注意:输入输出要求格式,以及代码语句!
# 降维放在类self.xxx的位置
# 注意前两项就是维度 希望512变成256
self.fe_rn =nn.Conv2d(512, 256,kernel_size=3,stride=1,padding=1,bias=False,)
# reshape [1,144,512]
x = x.reshape(1,12,12,512)
# 降维的格式,做点交换
x = x.permute(0,3,1,2)
# 降维
x = self.fe_rn(x)
# 特征可视化格式,做点交换
x = x.permute(0,2,3,1)
Show_Feature(x)
⚪f1 = f1.cpu().detach().numpy()
实际上就是涉及numpy和tensor的转换问题: