manifold and non-manifold mesh

流形是局部具有欧几里得空间性质的空间,广泛应用于数学、物理等领域。文章深入探讨了流形的概念及其在地球表面、经典力学、广义相对论等场景的应用,同时介绍了流形的拓扑结构、解析几何结构与光滑流形之间的区别,并解释了流形作为数学和物理模型的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

From wikipedia: http://zh.wikipedia.org/wiki/%E6%B5%81%E5%BD%A2


流形,是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。因此,流形曲面因为局部可以看做平面,有更好的性质,比如说可以求解局部的法向量,从而知识曲面的内外方向。

流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。

一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。


简介[编辑]

理想化的地球是一个流形。越近看就越近似于平面(“大三角形”是曲边的,但右下角 非常小的三角形就和平面上一样了)。

流形可以视为近看起来象欧几里得空间或其他相对简单的空间的物体[1]:1。例如,人们曾经以为地球是平的。这是因为相对于地球来说人类实在太小,平常看到的地面是地球表面微小的一部分。所以,尽管知道地球实际上差不多是一个圆球,如果只需要考虑其中微小的一部分上发生的事情,比如测量操场跑道的长度或进行房地产交易时,仍然把地面看成一个平面。一个理想的数学上的面在足够小的区域上的特性就像一个平面,这表明它是一个流形[2]:283。但是球面和平面的整体结构是完全不同的:如果在球面上沿一个固定方向走,最终会回到起点,而在一个平面上,你可以一直走下去。

回到地球的例子。像旅行的时候,会用平面的地图来指示方位。如果将整个地球的各个地区的地图合订成一本地图集,那么在观看各个地区的地图后,就可以在脑海中“拼接”出整个地球的景貌。为了能让阅读者顺利从一张地图接到下一张,相邻的地图之间会有重叠的部分,以便在脑海里“粘合”两张图。类似地,在数学中,也可以用一系列“地图”(称为坐标图坐标卡)组成的“地图集”(atlas, 亦称为图册)来描述一个流形[2]:283。而“地图”之间重叠的部分在不同的地图里如何变换,则描述了不同“地图”的相互关系。

描述一个流形往往需要不止一个“地图”,因为一般来说流形并不是真正的欧几里得空间。举例来说,地球就没法用一张平面的地图来合适地描绘。

流形要求局部“看起来像”简单的空间,即点,线,面. 例如球体的每个微小的局部表面都可以看作是一个平面。这不是一个简单的要求。例如,在球上吊一根线,这个整体就不是一个流形。包含了线和球连接的那一点的附近区域一定不是简单的:既不是线也不是面,无论这个区域有多小。

流形有很多种。最简单的是拓扑流形,它们局部看来像欧几里得空间。其他的种类包含了它们在使用中所需要的额外的结构。例如,一个微分流形不仅支持拓扑,而且要支持微积分黎曼流形的思想导致了广义相对论的数学基础,使得人们能够用曲率来描述时空

根据上面的描述,球体是一个流形,而正方体则不是,因为在正方体顶点的局部区域内,其既不是线,也不是面。


为了修复非流形网格,我们可以使用OpenMesh库中的一些函数和数据结构。下面是一个使用OpenMesh库修复非流形网格的示例代码,使用的是OpenMesh 8.1.0版本: ```c++ #include <iostream> #include <OpenMesh/Core/IO/MeshIO.hh> #include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh> #include <OpenMesh/Tools/Utils/getopt.h> #include <OpenMesh/Tools/Utils/Timer.hh> struct MyTraits : public OpenMesh::DefaultTraits { HalfedgeAttributes(OpenMesh::Attributes::PrevHalfedge); }; typedef OpenMesh::TriMesh_ArrayKernelT<MyTraits> MyMesh; int main(int argc, char **argv) { MyMesh mesh; // Read mesh from file if (!OpenMesh::IO::read_mesh(mesh, "input.off")) { std::cerr << "Error: Cannot read mesh from file!" << std::endl; return 1; } // Check if mesh is non-manifold if (!mesh.is_manifold()) { std::cout << "Mesh is non-manifold!" << std::endl; // Try to repair mesh if (OpenMesh::Utils::MeshCheckerT<MyMesh>(mesh).repair_non_manifold()) { std::cout << "Mesh successfully repaired!" << std::endl; } else { std::cerr << "Error: Cannot repair mesh!" << std::endl; return 1; } } // Write mesh to file if (!OpenMesh::IO::write_mesh(mesh, "output.off")) { std::cerr << "Error: Cannot write mesh to file!" << std::endl; return 1; } return 0; } ``` 这个示例代码首先读取一个包含非流形网格的OFF格式文件,并检查网格是否为流形。如果网格不是流形,则使用OpenMesh库中的MeshCheckerT类的repair_non_manifold()函数来修复网格。最后,修复后的网格被写回到另一个OFF格式文件中。 需要注意的是,这个示例代码使用了OpenMesh 8.1.0版本,但是不同版本的OpenMesh可能会有一些差异,所以建议使用最新版本的OpenMesh库来进行开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值