每一个女孩都是囚徒

每一个女孩都是囚徒
ralphyang 发表于 2005-1-5 8:36:00

夏天到了,街上的女孩花枝招展,娉娉婷婷。这是一个让人的心情最愉快的季节。不知道大家是否同意我的意见:街上的漂亮女孩越来越多了。为什么女孩会越来越漂亮?我提出了几个假说:第一,营养水平和饮食结构的改善对于女孩的容貌不无裨益,所以随着人民生活水平的提高,漂亮女孩会越来越多;第二,人口流动性的提高使得女孩纷纷到大中城市找工作,因为她们在这里能够找到更好的个人发展机会,所以一个地区经济繁荣的程度和街上女孩的漂亮程度正相关;第三,观念的改变一方面使得女孩更加勇敢地展示自己的美丽,另一方面使得人们更加大胆地欣赏女孩的美丽。据说美丽在于发现,所以审美能力越强的人在街上看见的漂亮女孩越多。

  还有最后一点我想单独拿出来说说。那就是女孩越来越懂得美化自己了。美化自己的方式很多:穿上时髦的衣服、精心地化妆、甚至去做美容手术等等。在预算约束条件下,女孩子的最优化问题就是选择能够使得自己的收益最大化的资产组合。谚语说:"贫家净扫地,贫女净梳头"。只要投入一定的要素(包括资本和人力资本),女孩总能够使自己的容貌变得更加妩媚动人。

  不过,这说得是女孩的绝对收益,即她现在的容貌与过去的容貌相比更加出色。如果考虑到相对收益,情况就会稍有不同。假定女孩多少都会有些虚荣心,她们都希望自己能够压倒群芳。假定一群女孩的容貌差别不大,都是豆蔻年华,这时候,如果其他的女孩都没有化妆,只有一个女孩化妆,比如她染了红指甲,那么这个女孩马上就会引起大家的注意,大家都会觉得她好看。别的女孩不甘落后,自然群起效仿,结果所有的女孩都染了红指甲。这时候,如果有个女孩还想出人头地,就必须想出新的点子,比如她抹了口红,这会让她在第二天出尽风头,但是别的女孩又会很快效仿,结果所有的女孩都抹了口红。数个回合下来,我们会发现所有的女孩都染了红指甲,所有的女孩都抹了口红,所有的女孩都搽了胭脂,所有的女孩都穿了吊带背心,但是,从相对收益的角度来看,没有一个女孩能够做得比所有的女孩都不化妆的时候更好。而且,或许女孩们都忽然对这种"军备竞赛"感到厌烦,可是给定别的女孩都还化妆,那个拒绝化妆的女孩会显得像个丑八怪,于是所有的女孩都只得继续化妆。这正是博弈论里常说的"囚徒困境",每一个女孩都成了囚徒。

  其实每一个经济学家和女孩一样,也都是囚徒。我想说的是为什么经济学家用的数学工具越来越复杂。尽管赞成经济学数理化的理由很多,也很可能说得在理,但是我还是比较喜欢我的有点社会学的解释。每个经济学家都想表现得比别人更聪明,这时候,有一个经济学家发现在论文中使用别人都不懂的数学一下子把别人镇住了。尤其是编辑不敢轻易地枪毙自己看不懂的论文,因为他们生怕别人知道他们看不懂。可是在真正聪明的数学家看来,经济学家使用的数学工具都是唬人的小儿科。这也是为什么别的经济学家很快也就学会原来看似艰深的数学工具的原因。于是想冒尖的经济学家只得去寻找更艰深的数学工具,但是只要他们找得到,别的学者很快也就能学得会。最后,经济学家用的数学越来越多,门外汉越来越对经济学一头雾水,经济学解释世界的能力却很难说有非常大的提高。厌倦了这种无聊的游戏,想在自己的论文中不用数学?给定别的经济学家都还在咬着铅笔头算数学题,那个不用数学的家伙会显得格外愚蠢,论文写出来连发表的机会都没有。

  女孩和经济学家的例子有什么不同呢?女孩的竞争带来了正的外部性,她们的美丽让她们自己更加自信,也让我们的心情变得更加愉快。所以我们要鼓励她们继续竞争,继续做美丽的囚徒。经济学家的竞争带来了负的外部性,他们让整个社会对经济学的理解更加生疏,对经济学家的态度更加不友好,所以我们要鼓励他们合作,从明天起所有的经济学家都只能用白话文写作。

和哥哥做还是不做?
——关于男女交往的博弈论分析

作者按:记得在前段时间,看到一个妹妹发过一个帖子,提出了她很困惑的一个问题,今天在学习博弈论时,突然觉得这个问题可以用博弈论的知识来分析,初步分析,请大家多多指教。)
妹妹的问题如下:(呵呵!好不容易才搜到这个帖子)我GG要和我做那个,我很犹豫,他说现在做过的太多了。我相信他的话,但作为女生: 就得想多点,“以后要是他不爱我怎么办?”,“如果再找别的男生,会不会因..: 个而有什么想法?”但我很爱他,不想让他失望,我该怎么办呢?
下面我们就这个问题进行分析:(因为是妹妹提出的问题,所以以下的分析是站在妹妹的立场上来分析)我们暂且假设妹妹和哥哥都是理性的,妹妹说得话时正确的,妹妹很爱哥哥,但是,有一点不确定的是,哥哥是否真爱妹妹?

第一种情况,哥哥爱妹妹,那么,我们可以作以下定义:在这个博弈中:
参与人:哥哥,妹妹
行动: 做 ; 不做;结婚;不结婚(因为对妹妹而言,她面临的选择是做还是不做,而对做与不做的后果的评价还取决于哥哥将来是否和妹妹结婚)
结果:有四个结果(在这里只分析结果,不分析原因,比如我们不分析两人最终不结婚的种种原因):
结果一:妹妹同意和哥哥做(以下简称做);将来哥哥和妹妹结婚。
结果二:妹妹同意和哥哥做; 将来哥哥不和妹妹结婚
结果三:妹妹不和哥哥做(以下简称不做);将来哥哥和妹妹结婚。
结果四:妹妹不和哥哥做; 将来哥哥不和妹妹结婚
对于结果一,我们认为对妹妹来说,这个结果并不坏,因此我们认为其满意度为20。对哥哥来说,这个结果也不坏,其满意度为20
对于结果二,我们认为对妹妹来说,什么都没得到,这个结果比较坏,因此我们认为其满意度为0。对哥哥来说,这个结果不坏,其满意度为20
对于结果三,我们认为对妹妹来说,这个结果并不坏,因此我们仍认为其满意度为20。对哥哥来说,需要付出等待的代价,其满意度为10
对于结果四,我们认为对妹妹来说,这个结果不如结果一和结果二好,但是要比结果三要好些!,因此我们认为其满意度为10。对于哥哥而言,什么也没得到,其满意度为0。

这就一个完全信息的静态博弈:

妹妹
做 不做
哥哥: 结婚 20 20 10 20
不结婚 20 0 0 10

那么,妹妹应如何分析这个博弈呢?
假设将来哥哥不和和妹妹结婚:也就是说会出现结果二和结果四这两个结果,对妹妹而言,最优选择是“不做”,假设将来哥哥和和妹妹结婚,那么就会出现结果二和结果四这两个结果,对妹妹而言,做和不做都是最优选择,
结合以上两种情况,妹妹的最优选择是不做,因为假设将来哥哥不和和妹妹结婚的话,妹妹的最优选择是“不做”,即使将来哥哥和和妹妹结婚的话,这个选择也不必另一种选择更差!
这样,妹妹的最优选择是:不做
如果哥哥意识到这一点,而且哥哥是理性的,那么这是他的最优选择是“和妹妹结婚”这样,这个博弈的纳什均衡就是(不做,结婚)

第二种情况,哥哥不真爱妹妹,但妹妹不知道。
但是,我们以上的假设忽略了一种情况,那就是妹妹所担心的问题,就是说如果不和哥哥做,她担心会失去哥哥,在她看来,失去哥哥是一件不能容忍的事,那么,如果因为不和哥哥做而失去哥哥,妹妹会很痛苦,其满意度为0,对哥哥而言,如果妹妹不和他做,他会和他分手,其满意度为0。但是,如果妹妹不和他做,他无法忍受,其满意度为-10,那么原来的结果四就有了重新定义,就有了以下的四个结果:
对于结果一,我们认为对妹妹来说,这个结果并不坏,因此我们认为其满意度为20。对哥哥来说,这个结果不好也不坏,其满意度为20
对于结果二,我们认为对妹妹来说,什么都没得到,这个结果比较坏,因此我们认为其满意度为0。对哥哥来说,这个结果不坏,因为他本来就不真爱妹妹,这种结果出现时,他还可以找新的妹妹,其满意度为30
对于结果三,我们认为对妹妹来说,这个结果并不坏,但是事先要承担害怕和哥哥分手的压力,其满意度不如结果一,因此我们仍认为其满意度为10。对哥哥来说满意度不如结果一,如果不真爱妹妹但是最后还是和妹妹接了婚,而且需要付出等待的成本, 其满意度为15(这里暗示着哥哥并不真爱妹妹)。
对于结果四,我们认为对妹妹来说,由于失去了哥哥!,妹妹很痛苦,但要比结果三好,因此我们认为其满意度为10。对于哥哥而言,也是什么也没得到,其满意度为0。
则新的完全信息的静态博弈为:

妹妹.
做 不做
哥哥: 结婚 20 20 15 10
分手 30 0 0 10

这样就有了新的纳什均衡,为(做,分手) ,(不做,结婚)
但是,如果妹妹认为,及时她不和哥哥做,哥哥也不会因此和她分手,也就是说,如果她不和哥哥做,哥哥一定会和她分手这个威胁不可置信,她没有被吓倒,因为,妹妹一旦选择了“不做”,哥哥的最优选择并不是“分手”,而是结婚。
这就出现了新的泽尔滕的子博弈完美纳什均衡,这个概念的中心意义是把纳什均衡中包含的不可置信的战略威胁剔除出去,使均衡战略中不在包括不可置信的威胁。这是,新的纳什均衡为(不做,结婚)。
这个结果出来后,我也觉得不可思议,但假设是合理的,分析是严密的,所以结论也是可供妹妹们参考的。如果对兄弟们将来的行动造成不便,希望不要骂我!事先向各位兄弟谢罪!我是哥哥。



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值