目录
一、引言
1.1 研究背景与意义
急性非 ST 段抬高性心肌梗死(NSTEMI)是一种严重的心血管疾病,具有较高的发病率和死亡率,给患者健康及社会医疗资源带来沉重负担。NSTEMI 是由于冠状动脉粥样硬化斑块破裂或糜烂,导致血栓形成,进而引起冠状动脉血流减少或中断,造成心肌缺血坏死。其病情复杂多变,患者预后差异较大,若不能及时准确地评估病情并采取有效的治疗措施,极易引发严重并发症,如心力衰竭、心律失常、心源性休克甚至猝死 。
传统的诊断和治疗方法主要依赖医生的经验、临床症状、心电图以及心肌损伤标志物等,存在一定的局限性。随着医疗技术的不断进步,人工智能技术尤其是大模型在医学领域的应用逐渐成为研究热点。大模型具有强大的数据处理和分析能力,能够整合多源信息,挖掘数据背后的潜在规律,为疾病的诊断、治疗和预后评估提供更为精准的支持。
将大模型应用于 NSTEMI 的预测,具有重要的临床意义和现实价值。在术前,通过大模型对患者的病史、症状、检查结果等多维度数据进行综合分析,可以准确评估患者发生 NSTEMI 的风险,有助于早期发现潜在患者,及时采取预防措施,降低疾病发生率。在术中,大模型能够实时监测患者的生理参数和手术进程,预测手术风险,为医生提供决策支持,保障手术的顺利进行。术后,大模型可以根据患者的恢复情况,预测并发症的发生风险,指导医生制定个性化的康复方案,促进患者康复,提高患者的生活质量。大模型还可以为医疗资源的合理分配提供依据,优化医疗服务流程,提高医疗效率,降低医疗成本。
1.2 研究目的与创新点
本研究旨在利用大模型构建一个全面、精准的 NSTEMI 预测体系,实现对 NSTEMI 术前、术中、术后及并发症风险的准确预测,并基于预测结果制定个性化的手术方案、麻醉方案、术后护理方案以及健康教育与指导方案,从而提高 NSTEMI 的治疗效果和患者的预后。
本研究的创新点主要体现在以下几个方面:一是首次将大模型应用于 NSTEMI 全病程的风险预测,实现了从术前到术后的全方位、动态化评估,突破了传统预测方法的局限性;二是通过多源数据融合,整合患者的临床信息、检查检验数据、基因数据等,充分挖掘数据间的潜在关系,提高了预测的准确性和可靠性;三是基于大模型的预测结果,制定了个性化的诊疗方案,实现了从 “经验医学” 向 “精准医学” 的转变,有望为 NSTEMI 的临床治疗提供新的思路和方法;四是将大模型与临床实践相结合,通过实际病例验证模型的有效性和实用性,为大模型在心血管疾病领域的广泛应用奠定了基础。
二、急性非 ST 段抬高性心肌梗死概述
2.1 疾病定义与病理生理机制
急性非 ST 段抬高性心肌梗死(NSTEMI)是急性冠状动脉综合征(ACS)的重要类型之一,指冠状动脉粥样硬化斑块破裂或糜烂,继发血小板聚集、血栓形成,导致冠状动脉不完全闭塞,进而引起心肌急性缺血性坏死,但心电图无 ST 段抬高表现的临床综合征 。
其病理生理机制主要涉及以下几个关键环节:首先,冠状动脉粥样硬化是 NSTEMI 的病理基础,在多种危险因素(如高血压、高血脂、糖尿病、吸烟等)的长期作用下,冠状动脉内膜逐渐形成粥样斑块。随着斑块不断进展,其稳定性逐渐下降,纤维帽变薄,脂质核心增大。当受到血流动力学改变、炎症反应、氧化应激等因素刺激时,斑块易发生破裂或糜烂,暴露的内皮下胶原纤维和组织因子等迅速激活血小板,引发血小板聚集和黏附,形成富含血小板的白色血栓 。白色血栓逐渐增大,使冠状动脉管腔进行性狭窄,心肌供血急剧减少,当缺血程度超过心肌的代偿能力时,便导致心肌细胞坏死 。冠状动脉痉挛也可能在 NSTEMI 的发病中起重要作用,它可进一步加重冠状动脉狭窄,减少心肌供血,促进血栓形成。
2.2 临床症状与诊断标准
NSTEMI 的临床症状多样,典型症状为发作性胸痛,疼痛部位多位于胸骨后或心前区,可放射至左肩、左臂内侧、颈部、下颌等部位,疼痛性质多为压榨性、闷痛或紧缩感,疼痛程度较剧烈,常难以忍受,持续时间通常超过 30 分钟,休息或含服硝酸甘油不能完全缓解 。部分患者还可伴有呼吸困难、出汗、恶心、呕吐、心悸、头晕等症状。不典型症状在老年人、糖尿病患者、女性等人群中较为常见,如表现为牙痛、腹痛、背痛、乏力、呼吸困难等,容易被误诊或漏诊 。
诊断 NSTEMI 主要依据以下几方面:一是典型的临床症状,如上述发作性胸痛等表现。二是心电图改变,NSTEMI 患者心电图通常无 ST 段抬高,但可出现 ST 段压低(尤其是动态性 ST 段压低)、T 波倒置或低平、T 波假性正常化等心肌缺血性改变,部分患者还可能出现心律失常,如室性早搏、心房颤动等 。三是心肌损伤标志物升高,这是诊断 NSTEMI 的重要依据之一,常用的心肌损伤标志物包括肌钙蛋白(cTn)、肌酸激酶同工酶(CK - MB)等,其中 cTn 具有较高的敏感性和特异性,在发病后 3 - 6 小时开始升高,10 - 24 小时达到峰值,持续升高 7 - 10 天;CK - MB 一般在发病后 3 - 8 小时升高,9 - 30 小时达到峰值,48 - 72 小时恢复正常 。结合临床症状、心电图和心肌损伤标志物的动态变化,可对 NSTEMI 做出准确诊断。
2.3 现有治疗手段与局限性
目前,NSTEMI 的治疗手段主要包括药物治疗、介入治疗和手术治疗 。药物治疗是基础,主要包括抗血小板药物(如阿司匹林、氯吡格雷、替格瑞洛等),通过抑制血小板聚集,防止血栓进一步形成和扩大;抗凝药物(如普通肝素、低分子肝素、比伐卢定等),可增强抗血栓作用;硝酸酯类药物(如硝酸甘油、单硝酸异山梨酯等),能够扩张冠状动脉,增加心肌供血,缓解胸痛症状;β 受体阻滞剂(如美托洛尔、比索洛尔等),可降低心肌耗氧量,减少心律失常的发生;他汀类药物(如阿托伐他汀、瑞舒伐他汀等),具有调脂、稳定斑块等作用 。
介入治疗是 NSTEMI 重要的治疗方法之一,主要指经皮冠状动脉介入治疗(PCI),包括冠状动脉球囊扩张术和冠状动脉支架植入术 。PCI 能够迅速开通狭窄或闭塞的冠状动脉,恢复心肌血流灌注,改善患者预后。对于病情严重、冠状动脉病变复杂、不适合 PCI 的患者,可考虑冠状动脉旁路移植术(CABG),即通过手术建立新的冠状动脉旁路,绕过狭窄或闭塞部位,为心肌提供充足的血液供应 。
然而,传统治疗方法存在一定局限性。在风险预测方面,主要依赖临床经验和简单的危险因素评估,难以准确预测患者发生不良事件的风险,无法实现个性化的精准治疗 。例如,对于一些高危患者,可能无法及时识别并给予强化治疗;而对于低危患者,可能过度治疗,增加患者的经济负担和不良反应发生风险 。在治疗决策上,缺乏客观、精准的量化指标,医生往往根据主观判断和经验选择治疗方案,不同医生之间的治疗决策可能存在差异,影响治疗效果的一致性和稳定性 。传统治疗方法在监测治疗效果和评估患者预后方面也存在不足,难以实时、动态地了解患者的病情变化,及时调整治疗策略 。
三、大模型技术原理与应用
3.1 大模型简介
大模型,通常指参数规模巨大、基于深度学习架构构建,并在大规模数据上进行训练的人工智能模型 。其发展历程可追溯到深度学习兴起阶段,早期受限于计算能力与数据规模,模型相对较小,应用范围有限 。随着 GPU 等硬件加速技术发展,以及互联网产生海量数据,大模型迎来快速发展期 。如 OpenAI 的 GPT 系列,从 GPT-1 到 GPT-4,参数数量呈指数级增长,性能与泛化能力大幅提升,推动自然语言处理领域取得突破性进展 。在医疗领域,大模型应用潜力巨大,能整合电子病历、医学影像、基因测序等多源异构数据,挖掘其中隐藏信息,辅助医生进行疾病诊断、治疗方案制定、药物研发等工作 。例如在疾病诊断方面,大模型通过学习大量病例数据,可对患者症状、检查结果进行综合分析,提供更准确的诊断建议,降低误诊漏诊率 。
3.2 适用于心肌梗死预测的大模型类型
在心肌梗死预测中,深度学习模型应用广泛 。神经网络模型,如多层感知机(MLP),通过多个神经元层对输入数据进行特征提取与模式识别 。在处理心肌梗死相关数据时,可将患者年龄、性别、病史、心电图数据、心肌酶指标等作为输入,经过隐藏层复杂计算,输出心肌梗死发生概率或风险等级预测结果 。卷积神经网络(CNN)最初用于图像识别,因其在提取局部特征方面优势显著,也逐渐应用于心肌梗死预测 。在分析心电图图像时,CNN 可自动学习心电图波形中不同波段、形态变化特征,识别出与心肌梗死相关的异常模式,比传统方法更高效准确 。循环神经网络(RNN)及其变体长短期记忆网络(LSTM)、门控循环单元(GRU),适合处理具有时间序列特征的数据 。心肌梗死患者在发病前后生理参数随时间动态变化,RNN 等模型可捕捉这些时间序列数据中的长期依赖关系,对病情发展趋势进行预测,例如预测患者在未来一段时间内发生心肌梗死的可能性 。
机器学习模型中的决策树与随机森林也常用于心肌梗死预测 。决策树通过对数据特征进行递归划分,构建树形决策模型 。以患者危险因素数据为基础,决策树可根据年龄是否大于某阈值、血压是否高于正常范围等条件进行分支判断,最终得出是否患有心肌梗死或患病风险高低的结论 。随机森林是基于决策树的集成学习模型,通过构建多个决策树并综合其预测结果,能有效降低过拟合风险,提高预测稳定性与准确性 。在心肌梗死预测任务中,随机森林可综合考虑更多数据特征,提供更可靠的预测结果 。
3.3 大模型在医疗领域的优势
大模型在医疗领域具有强大的数据处理能力,能快速分析海量医疗数据 。医疗领域积累了大量患者病历、检查检验报告、医学影像等数据,大模型可对这些多源、异构、海量数据进行整合与分析,挖掘数据间潜在联系与规律 。以心肌梗死预测为例,大模型可同时处理患者临床症状、心电图、心肌酶学指标、基因数据等信息,从复杂数据中提取关键特征,而传统方法往往只能关注有限数据维度,难以全面捕捉疾病相关信息 。
大模型能够发现数据中的隐藏模式 。在疾病诊断和预测中,许多疾病的发病机制复杂,症状表现不典型,传统方法可能无法准确识别疾病特征 。大模型通过深度学习算法,可从大量数据中自动学习到复杂的模式和特征,发现人类专家难以察觉的疾病关联 。在心肌梗死预测中,大模型可学习到一些不常见危险因素组合与心肌梗死发生的关系,为疾病预防和早期诊断提供新线索 。
大模型还能提供精准预测 。基于对大量数据的学习和分析,大模型可对疾病发生、发展及治疗效果进行精准预测 。在心肌梗死治疗中,大模型可根据患者个体特征,预测不同治疗方案的疗效与并发症发生风险,帮助医生制定个性化治疗方案,提高治疗效果,改善患者预后 。与传统基于经验和简单统计模型的预测方法相比,大模型预测更具科学性和准确性 。
四、术前风险预测与手术方案制定
4.1 大模型输入数据收集
通过电子病历系统,全面收集患者的基本信息,如年龄、性别、民族、职业等。详细记录患者既往病史,包括高血压、高血脂、糖尿病、冠心病、心律失常等疾病的患病时间、治疗情况及控制状态 。同时,了解患者的家族遗传病史,特别是心血管疾病家族史,为风险预测提供遗传背景信息。
在患者入院时,医护人员详细询问其当前症状,包括胸痛的部位、性质、程度、持续时间、发作频率,是否伴有呼吸困难、出汗、恶心、呕吐、心悸等症状,以及症状的诱发因素和缓解方式 。这些症状信息对于判断病情的严重程度和发病机制具有重要意义。
综合利用医院的检查设备,获取患者的心电图数据,包括常规 12 导联心电图及必要时的 18 导联心电图,分析 ST 段、T 波、Q 波等波形的变化,以及是否存在心律失常等异常情况 。通过实验室检测,获取心肌损伤标志物(如肌钙蛋白、肌酸激酶同工酶等)、血脂(总胆固醇、甘油三酯、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇等)、血糖、肾功能(肌酐、尿素氮等)、凝血功能(凝血酶原时间、活化部分凝血活酶时间等)等指标的数据,这些检查结果能够反映患者心肌损伤程度、代谢状态和凝血功能等,为风险预测提供关键依据 。利用心脏超声检查,评估患者心脏的结构和功能,包括左心室射血分数、室壁运动情况、瓣膜功能等,了解心脏的器质性病变情况 。对于部分患者,还可根据需要进行冠状动脉 CT 血管造影ÿ