马尔科夫决策过程(MDP):详解与应用
引言
在人工智能、机器学习和运筹学等领域,马尔科夫决策过程(Markov Decision Process,MDP)是一个基础而重要的数学模型。MDP 被广泛应用于优化决策问题,特别是在环境具有不确定性和随机性的情况下。许多现实世界中的决策问题,例如机器人路径规划、自动驾驶、金融投资决策等,都可以建模为 MDP。本文将详细介绍 MDP 的基本概念,力求内容既有深度又通俗易懂。
什么是马尔科夫决策过程?
马尔科夫决策过程是一种用于在随机环境中进行决策的数学模型,它可以用来描述一个智能体在某个环境中如何通过一系列决策来达到最佳的长期目标。在 MDP 中,智能体在每个时间步通过采取一个动作,从当前状态转移到下一个状态,并获得一个相应的奖励。MDP 的关键特点是未来的状态仅依赖于当前的状态和动作,而与过去的状态和动作无关,这一特性称为“马尔科夫性”。
MDP 的数学定义
一个马尔科夫决策过程通常表示为一个五元组 ( S , A , P , R , γ ) (S, A, P, R, \gamma) (S,A,P,R,γ),其中:
- S:状态空间(State Space),表示环境中所有可能的状态集合。例如,在一个迷宫中,状态可以表示智能体的位置。
- A:动作空间(Action Space),表示智能体在每个状态下可以执行的动作集合。例如,在迷宫中,动作可以是“向左移动”、“向右移动”等。
- P:状态转移概率(State Transition Probability),定义为 P ( s ′ ∣ s , a ) P(s'|s,a) P(s′∣s,a),表示在状态 s s s 下执行动作 a a a 后转移到状态 s ′ s' s′ 的概率。
- R:奖励函数(Reward Function),定义为 R ( s , a ) R(s,a) R(s,a) 或 R ( s , a , s ′ ) R(s,a,s') R(s,a,s′),表示在状态 s s s 下执行动作 a a a 并转移到状态 s ′ s' s′ 时获得的即时奖励。
- γ \gamma γ:折扣因子(Discount Factor), γ ∈ [ 0 , 1 ] \gamma \in [0, 1] γ∈[0,1],用于衡量当前奖励与未来奖励的权重关系。